Cargando…
Recognizing ion ligand binding sites by SMO algorithm
BACKGROUND: In many important life activities, the execution of protein function depends on the interaction between proteins and ligands. As an important protein binding ligand, the identification of the binding site of the ion ligands plays an important role in the study of the protein function. RE...
Autores principales: | Wang, Shan, Hu, Xiuzhen, Feng, Zhenxing, Zhang, Xiaojin, Liu, Liu, Sun, Kai, Xu, Shuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6905020/ https://www.ncbi.nlm.nih.gov/pubmed/31823742 http://dx.doi.org/10.1186/s12860-019-0237-9 |
Ejemplares similares
-
Recognizing Ion Ligand–Binding Residues by Random Forest Algorithm Based on Optimized Dihedral Angle
por: Liu, Liu, et al.
Publicado: (2020) -
The Identification of Metal Ion Ligand-Binding Residues by Adding the Reclassified Relative Solvent Accessibility
por: Hu, Xiuzhen, et al.
Publicado: (2020) -
Prediction of acid radical ion binding residues by K-nearest neighbors classifier
por: Liu, Liu, et al.
Publicado: (2019) -
Predicting Ca(2+) and Mg(2+) ligand binding sites by deep neural network algorithm
por: Sun, Kai, et al.
Publicado: (2022) -
Recognition of Metal Ion Ligand-Binding Residues by Adding Correlation Features and Propensity Factors
por: Xu, Shuang, et al.
Publicado: (2022)