Cargando…
TasselNetv2: in-field counting of wheat spikes with context-augmented local regression networks
BACKGROUND: Grain yield of wheat is greatly associated with the population of wheat spikes, i.e., [Formula: see text] . To obtain this index in a reliable and efficient way, it is necessary to count wheat spikes accurately and automatically. Currently computer vision technologies have shown great po...
Autores principales: | Xiong, Haipeng, Cao, Zhiguo, Lu, Hao, Madec, Simon, Liu, Liang, Shen, Chunhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6905110/ https://www.ncbi.nlm.nih.gov/pubmed/31857821 http://dx.doi.org/10.1186/s13007-019-0537-2 |
Ejemplares similares
-
TasselNetV2+: A Fast Implementation for High-Throughput Plant Counting From High-Resolution RGB Imagery
por: Lu, Hao, et al.
Publicado: (2020) -
TasselNet: counting maize tassels in the wild via local counts regression network
por: Lu, Hao, et al.
Publicado: (2017) -
TasselGAN: An Application of the Generative Adversarial Model for Creating Field-Based Maize Tassel Data
por: Shete, Snehal, et al.
Publicado: (2020) -
A Multiscale Point-Supervised Network for Counting Maize Tassels in the Wild
por: Zheng, Haoyu, et al.
Publicado: (2023) -
Wheat Spike Detection and Counting in the Field Based on SpikeRetinaNet
por: Wen, Changji, et al.
Publicado: (2022)