Cargando…
Applications of advanced signal processing and machine learning in the neonatal hypoxic-ischemic electroencephalography
Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research community with an opportunity to develop automated real-time identification techniques...
Autores principales: | Abbasi, Hamid, Unsworth, Charles P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6905345/ https://www.ncbi.nlm.nih.gov/pubmed/31552887 http://dx.doi.org/10.4103/1673-5374.265542 |
Ejemplares similares
-
Electroencephalography studies of hypoxic ischemia in fetal and neonatal animal models
por: Abbasi, Hamid, et al.
Publicado: (2019) -
Cognitive Outcome Prediction in Infants With Neonatal Hypoxic-Ischemic Encephalopathy Based on Functional Connectivity and Complexity of the Electroencephalography Signal
por: Alotaibi, Noura, et al.
Publicado: (2022) -
Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers
por: Abbasi, Hamid, et al.
Publicado: (2020) -
Machine learning for the early prediction of infants with electrographic seizures in neonatal hypoxic‐ischemic encephalopathy
por: Pavel, Andreea M., et al.
Publicado: (2022) -
Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy
por: Ranjan, Amaresh K., et al.
Publicado: (2023)