Cargando…
Robust-ODAL: Learning from heterogeneous health systems without sharing patient-level data
Electronic Health Records (EHR) contain extensive patient data on various health outcomes and risk predictors, providing an efficient and wide-reaching source for health research. Integrated EHR data can provide a larger sample size of the population to improve estimation and prediction accuracy. To...
Autores principales: | Tong, Jiayi, Duan, Rui, Li, Ruowang, Scheuemie, Martijn J., Moore, Jason H., Chen, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6905508/ https://www.ncbi.nlm.nih.gov/pubmed/31797639 |
Ejemplares similares
-
ODAL: A one-shot distributed algorithm to perform logistic regressions on electronic health records data from multiple clinical sites
por: Duan, Rui, et al.
Publicado: (2019) -
Quantifying and correcting bias due to outcome dependent self-reported weights in longitudinal study of weight loss interventions
por: Tong, Jiayi, et al.
Publicado: (2023) -
Distributed learning for heterogeneous clinical data with application to integrating COVID-19 data across 230 sites
por: Tong, Jiayi, et al.
Publicado: (2022) -
Neural heterogeneity promotes robust learning
por: Perez-Nieves, Nicolas, et al.
Publicado: (2021) -
A repository for the publication and sharing of heterogeneous materials data
por: Gong, Haiyan, et al.
Publicado: (2022)