Cargando…
Exploring thematic structure and predicted functionality of 16S rRNA amplicon data
Analysis of microbiome data involves identifying co-occurring groups of taxa associated with sample features of interest (e.g., disease state). Elucidating such relations is often difficult as microbiome data are compositional, sparse, and have high dimensionality. Also, the configuration of co-occu...
Autores principales: | Woloszynek, Stephen, Mell, Joshua Chang, Zhao, Zhengqiao, Simpson, Gideon, O’Connor, Michael P., Rosen, Gail L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6905537/ https://www.ncbi.nlm.nih.gov/pubmed/31825995 http://dx.doi.org/10.1371/journal.pone.0219235 |
Ejemplares similares
-
Learning, visualizing and exploring 16S rRNA structure using an attention-based deep neural network
por: Zhao, Zhengqiao, et al.
Publicado: (2021) -
16S rRNA sequence embeddings: Meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses
por: Woloszynek, Stephen, et al.
Publicado: (2019) -
16S rRNA Amplicon Sequencing for Epidemiological Surveys of Bacteria in Wildlife
por: Galan, Maxime, et al.
Publicado: (2016) -
Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing
por: Prodan, Andrei, et al.
Publicado: (2020) -
Processing human urine and ureteral stents for 16S rRNA amplicon sequencing
por: Al, Kait F., et al.
Publicado: (2021)