Cargando…

Switching States: dynamic remodelling of polarity complexes as a toolkit for cell polarization

Polarity is defined by the segregation of cellular components along a defined axis. To polarize robustly, cells must be able to break symmetry and subsequently amplify these nascent asymmetries. Finally, asymmetric localization of signaling molecules must be translated into functional regulation of...

Descripción completa

Detalles Bibliográficos
Autores principales: Peglion, Florent, Goehring, Nathan W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906085/
https://www.ncbi.nlm.nih.gov/pubmed/31295650
http://dx.doi.org/10.1016/j.ceb.2019.05.002
Descripción
Sumario:Polarity is defined by the segregation of cellular components along a defined axis. To polarize robustly, cells must be able to break symmetry and subsequently amplify these nascent asymmetries. Finally, asymmetric localization of signaling molecules must be translated into functional regulation of downstream effector pathways. Central to these behaviors are a diverse set of cell polarity networks. Within these networks, molecules exhibit varied behaviors, dynamically switching among different complexes and states, active vs inactive, bound vs unbound, immobile vs diffusive. This ability to switch dynamically between states is intimately connected to the ability of molecules to generate asymmetric patterns within cells. Focusing primarily on polarity pathways governed by the conserved PAR proteins, we discuss strategies enabled by these dynamic behaviors that are used by cells to polarize. We highlight not only how switching between states is linked to the ability of polarity proteins to localize asymmetrically, but also how cells take advantage of ‘state switching’ to regulate polarity in time and space.