Cargando…

Chromosomal dynamics in space and time: evolutionary history of Mycetophylax ants across past climatic changes in the Brazilian Atlantic coast

Fungus-farming ants of the genus Mycetophylax exhibit intra and interspecific chromosome variability, which makes them suitable for testing hypotheses about possible chromosomal rearrangements that endure lineage diversification. We combined cytogenetic and molecular data from Mycetophylax populatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Micolino, Ricardo, Cristiano, Maykon Passos, Travenzoli, Natália Martins, Lopes, Denilce Meneses, Cardoso, Danon Clemes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906305/
https://www.ncbi.nlm.nih.gov/pubmed/31827151
http://dx.doi.org/10.1038/s41598-019-55135-5
Descripción
Sumario:Fungus-farming ants of the genus Mycetophylax exhibit intra and interspecific chromosome variability, which makes them suitable for testing hypotheses about possible chromosomal rearrangements that endure lineage diversification. We combined cytogenetic and molecular data from Mycetophylax populations from coastal environments to trace the evolutionary history of the clade in light of chromosomal changes under a historical and geographic context. Our cytogenetic analyses revealed chromosomal differences within and among species. M. morschi exhibited three distinct karyotypes and considerable variability in the localization of 45S rDNA clusters. The molecular phylogeny was congruent with our cytogenetic findings. Biogeographical and divergence time dating analyses estimated that the most recent common ancestor of Mycetophylax would have originated at about 30 Ma in an area including the Amazon and Southern Grasslands, and several dispersion and vicariance events may have occurred before the colonization of the Brazilian Atlantic coast. Diversification of the psammophilous Mycetophylax first took place in the Middle Miocene (ca. 18–10 Ma) in the South Atlantic coast, while “M. morschi” lineages diversified during the Pliocene-Pleistocene transition (ca. 3–2 Ma) through founder-event dispersal for the Northern coastal regions. Psammophilous Mycetophylax diversification fits into the major global climatic events that have had a direct impact on the changes in sea level as well as deep ecological impact throughout South America. We assume therefore that putative chromosomal rearrangements correlated with increased ecological stress during the past climatic transitions could have intensified and/or accompanied the divergence of the psammophilous Mycetophylax. We further reiterate that “M. morschi” comprises a complex of at least three well-defined lineages, and we emphasize the role of this integrative approach for the identification and delimitation of evolutionary lineages.