Cargando…

High efficiency DBR assisted grating chirp generators for silicon nitride fiber-chip coupling

Silicon Nitride (SiN) is emerging as a promising material for a variety of integrated photonic applications. Given its low index contrast however, a key challenge remains to design efficient couplers for the numerous platforms in SiN photonics portfolio. Using a combination of bottom reflector and a...

Descripción completa

Detalles Bibliográficos
Autores principales: Nambiar, Siddharth, Ranganath, Praveen, Kallega, Rakshitha, Selvaraja, Shankar Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906413/
https://www.ncbi.nlm.nih.gov/pubmed/31827148
http://dx.doi.org/10.1038/s41598-019-55140-8
Descripción
Sumario:Silicon Nitride (SiN) is emerging as a promising material for a variety of integrated photonic applications. Given its low index contrast however, a key challenge remains to design efficient couplers for the numerous platforms in SiN photonics portfolio. Using a combination of bottom reflector and a chirp generating algorithm, we propose and demonstrate high efficiency, grating couplers on two distinct SiN platforms. For a partially etched grating on 500 nm thick SiN, a calculated peak efficiency of −0.5 dB/coupler is predicted, while for a fully etched grating on 400 nm thick SiN, an efficiency of −0.4 dB/coupler is predicted. Experimentally measured coupling efficiencies are observed to be −1.17 and −1.24 dB/coupler for the partial and fully etched grating couplers respectively in the C-L band region. Furthermore, through numerical simulations, it is shown that the chirping algorithm can be implemented in eight additional combinations comprising SiN film thickness between 300–700 nm as well as alternate claddings, to achieve a per coupler loss between −0.33 to −0.65 dB.