Cargando…
Fingerprints of slingshot non-sequential double ionization on two-electron probability distributions
We study double ionization of He driven by near-single-cycle laser pulses at low intensities at 400 nm. Using a three-dimensional semiclassical model, we identify the pathways that prevail non-sequential double ionization (NSDI). We focus mostly on the delayed pathway, where one electron ionizes wit...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906482/ https://www.ncbi.nlm.nih.gov/pubmed/31827133 http://dx.doi.org/10.1038/s41598-019-55066-1 |
Sumario: | We study double ionization of He driven by near-single-cycle laser pulses at low intensities at 400 nm. Using a three-dimensional semiclassical model, we identify the pathways that prevail non-sequential double ionization (NSDI). We focus mostly on the delayed pathway, where one electron ionizes with a time-delay after recollision. We have recently shown that the mechanism that prevails the delayed pathway depends on intensity. For low intensities slingshot-NSDI is the dominant mechanism. Here, we identify the differences in two-electron probability distributions of the prevailing NSDI pathways. This allows us to identify properties of the two-electron escape and thus gain significant insight into slingshot-NSDI. Interestingly, we find that an observable fingerpint of slingshot-NSDI is the two electrons escaping with large and roughly equal energies. |
---|