Cargando…

Three-Dimensional Skyrmions with Arbitrary Topological Number in a Ferromagnetic Spin-1 Bose-Einstein Condensate

We propose a new scheme for creating three-dimensional Skyrmions in a ferromagnetic spin-1 Bose-Einstein condensate by manipulating a multipole magnetic field and a pair of counter-propagating laser beams. The result shows that a three-dimensional Skyrmion with topological number Q = 2 can be create...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Huan-Bo, Li, Lu, Liu, Wu-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906496/
https://www.ncbi.nlm.nih.gov/pubmed/31827109
http://dx.doi.org/10.1038/s41598-019-54856-x
Descripción
Sumario:We propose a new scheme for creating three-dimensional Skyrmions in a ferromagnetic spin-1 Bose-Einstein condensate by manipulating a multipole magnetic field and a pair of counter-propagating laser beams. The result shows that a three-dimensional Skyrmion with topological number Q = 2 can be created by a sextupole magnetic field and the laser beams. Meanwhile, the vortex ring and knot structure in the Skyrmion are found. The topological number can be calculated analytically in our model, which implies that the method can be extended to create Skyrmions with arbitrary topological number. As the examples, three-dimensional Skyrmions with Q = 3, 4 are also demonstrated and are distinguishable by the density distributions with a specific quantization axis. These topological objects have the potential to be realized in ferromagnetic spin-1 Bose-Einstein condensates experimentally.