Cargando…
Hybrid AC/DC microgrid test system simulation: grid-connected mode
In this paper, a Microgrid (MG) test model based on the 14-busbar IEEE distribution system is proposed. This model can constitute an important research tool for the analysis of electrical grids in its transition to Smart Grids (SG). The benchmark is used as a base case for power flow analysis and qu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906684/ https://www.ncbi.nlm.nih.gov/pubmed/31867453 http://dx.doi.org/10.1016/j.heliyon.2019.e02862 |
_version_ | 1783478394705412096 |
---|---|
author | Ortiz, Leony Orizondo, Rogelio Águila, Alexander González, Jorge W. López, Gabriel J. Isaac, Idi |
author_facet | Ortiz, Leony Orizondo, Rogelio Águila, Alexander González, Jorge W. López, Gabriel J. Isaac, Idi |
author_sort | Ortiz, Leony |
collection | PubMed |
description | In this paper, a Microgrid (MG) test model based on the 14-busbar IEEE distribution system is proposed. This model can constitute an important research tool for the analysis of electrical grids in its transition to Smart Grids (SG). The benchmark is used as a base case for power flow analysis and quality variables related with SG and holds distributed resources. The proposed MG consists of DC and AC buses with different types of loads and distributed generation at two voltage levels. A complete model of this MG has been simulated using the MATLAB/Simulink environmental simulation platform. The proposed electrical system will provide a base case for other studies such as: reactive power compensation, stability and inertia analysis, reliability, demand response studies, hierarchical control, fault tolerant control, optimization and energy storage strategies. |
format | Online Article Text |
id | pubmed-6906684 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-69066842019-12-20 Hybrid AC/DC microgrid test system simulation: grid-connected mode Ortiz, Leony Orizondo, Rogelio Águila, Alexander González, Jorge W. López, Gabriel J. Isaac, Idi Heliyon Article In this paper, a Microgrid (MG) test model based on the 14-busbar IEEE distribution system is proposed. This model can constitute an important research tool for the analysis of electrical grids in its transition to Smart Grids (SG). The benchmark is used as a base case for power flow analysis and quality variables related with SG and holds distributed resources. The proposed MG consists of DC and AC buses with different types of loads and distributed generation at two voltage levels. A complete model of this MG has been simulated using the MATLAB/Simulink environmental simulation platform. The proposed electrical system will provide a base case for other studies such as: reactive power compensation, stability and inertia analysis, reliability, demand response studies, hierarchical control, fault tolerant control, optimization and energy storage strategies. Elsevier 2019-12-07 /pmc/articles/PMC6906684/ /pubmed/31867453 http://dx.doi.org/10.1016/j.heliyon.2019.e02862 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ortiz, Leony Orizondo, Rogelio Águila, Alexander González, Jorge W. López, Gabriel J. Isaac, Idi Hybrid AC/DC microgrid test system simulation: grid-connected mode |
title | Hybrid AC/DC microgrid test system simulation: grid-connected mode |
title_full | Hybrid AC/DC microgrid test system simulation: grid-connected mode |
title_fullStr | Hybrid AC/DC microgrid test system simulation: grid-connected mode |
title_full_unstemmed | Hybrid AC/DC microgrid test system simulation: grid-connected mode |
title_short | Hybrid AC/DC microgrid test system simulation: grid-connected mode |
title_sort | hybrid ac/dc microgrid test system simulation: grid-connected mode |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906684/ https://www.ncbi.nlm.nih.gov/pubmed/31867453 http://dx.doi.org/10.1016/j.heliyon.2019.e02862 |
work_keys_str_mv | AT ortizleony hybridacdcmicrogridtestsystemsimulationgridconnectedmode AT orizondorogelio hybridacdcmicrogridtestsystemsimulationgridconnectedmode AT aguilaalexander hybridacdcmicrogridtestsystemsimulationgridconnectedmode AT gonzalezjorgew hybridacdcmicrogridtestsystemsimulationgridconnectedmode AT lopezgabrielj hybridacdcmicrogridtestsystemsimulationgridconnectedmode AT isaacidi hybridacdcmicrogridtestsystemsimulationgridconnectedmode |