Cargando…

New Hydrogen-Bond-Enriched 1,3,5-Tris(2-hydroxyethyl) Isocyanurate Covalently Functionalized MCM-41: An Efficient and Recoverable Hybrid Catalyst for Convenient Synthesis of Acridinedione Derivatives

[Image: see text] A new nano-ordered 1,3,5-tris(2-hydroxyethyl) isocyanurate-1,3-propylene covalently functionalized MCM-41 (MCM-41-Pr-THEIC) was designed and prepared at room temperature through a simple procedure. According to various microscopic, spectroscopic, or thermal methods and techniques,...

Descripción completa

Detalles Bibliográficos
Autores principales: Alirezvani, Zahra, Dekamin, Mohammad G., Valiey, Ehsan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906789/
https://www.ncbi.nlm.nih.gov/pubmed/31858048
http://dx.doi.org/10.1021/acsomega.9b02755
Descripción
Sumario:[Image: see text] A new nano-ordered 1,3,5-tris(2-hydroxyethyl) isocyanurate-1,3-propylene covalently functionalized MCM-41 (MCM-41-Pr-THEIC) was designed and prepared at room temperature through a simple procedure. According to various microscopic, spectroscopic, or thermal methods and techniques, the correlation of the catalytic performance of the hybrid mesoporous MCM-41-Pr-THEIC to its structural characteristics was fully confirmed. The new MCM-41-Pr-THEIC organosilica nanomaterials were successfully investigated as a solid mild nanocatalyst through hydrogen-bonding activation provided by its organic moiety, for the pseudo-four-component condensation of dimedone, aldehydes, and ammonium acetate or p-toluidine to afford the corresponding acridinedione derivatives under green conditions. Furthermore, the introduced nanocatalyst could be reused at least four times with negligible loss of its activity, indicating the good stability and high activity of the new hybrid organosilica.