Cargando…
Comparison of four variable selection methods to determine the important variables in predicting the prognosis of traumatic brain injury patients by support vector machine
BACKGROUND: Large amounts of information have called for increased computational complexity. Data dimension reduction is therefore critical to preliminary analysis. In this research, four variable selection (VS) methods are compared to obtain the important variables in predicting the prognosis of tr...
Autores principales: | Pourahmad, Saeedeh, Rasouli-Emadi, Soheila, Moayyedi, Fatemeh, Khalili, Hosseinali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906917/ https://www.ncbi.nlm.nih.gov/pubmed/31850086 http://dx.doi.org/10.4103/jrms.JRMS_89_18 |
Ejemplares similares
-
Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm
por: Ashtiyani, M., et al.
Publicado: (2018) -
Evaluation of Twenty Genes in Prognosis of Patients with Ovarian Cancer Using Four Different Clustering Methods
por: Pourahmad, Saeedeh, et al.
Publicado: (2021) -
Prognosis prediction in traumatic brain injury patients using machine learning algorithms
por: Khalili, Hosseinali, et al.
Publicado: (2023) -
A machine learning model for predicting favorable outcome in severe traumatic brain injury patients after 6 months
por: Nourelahi, Mehdi, et al.
Publicado: (2022) -
Recursive Feature Selection with Significant Variables of Support Vectors
por: Tsai, Chen-An, et al.
Publicado: (2012)