Cargando…
A pan-cancer somatic mutation embedding using autoencoders
BACKGROUND: Next generation sequencing instruments are providing new opportunities for comprehensive analyses of cancer genomes. The increasing availability of tumor data allows to research the complexity of cancer disease with machine learning methods. The large available repositories of high dimen...
Autores principales: | Palazzo, Martin, Beauseroy, Pierre, Yankilevich, Patricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6907172/ https://www.ncbi.nlm.nih.gov/pubmed/31829157 http://dx.doi.org/10.1186/s12859-019-3298-z |
Ejemplares similares
-
Anomaly detection in genomic catalogues using unsupervised multi-view autoencoders
por: Ferré, Quentin, et al.
Publicado: (2021) -
Statistical method on nonrandom clustering with application to somatic mutations in cancer
por: Ye, Jingjing, et al.
Publicado: (2010) -
Cross-modal semantic autoencoder with embedding consensus
por: Sun, Shengzi, et al.
Publicado: (2021) -
Evaluation of Somatic Mutations in Solid Metastatic Pan-Cancer Patients
por: Roosan, Moom R., et al.
Publicado: (2021) -
Pan-cancer atlas of somatic core and linker histone mutations
por: Bonner, Erin R., et al.
Publicado: (2023)