Cargando…
Channel-spatial attention network for fewshot classification
Learning a powerful representation for a class with few labeled samples is a challenging problem. Although some state-of-the-art few-shot learning algorithms perform well based on meta-learning, they only focus on novel network architecture and fail to take advantage of the knowledge of every classi...
Autores principales: | Zhang, Yan, Fang, Min, Wang, Nian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6907821/ https://www.ncbi.nlm.nih.gov/pubmed/31830065 http://dx.doi.org/10.1371/journal.pone.0225426 |
Ejemplares similares
-
Multiscale Residual Network Based on Channel Spatial Attention Mechanism for Multilabel ECG Classification
por: Wang, Shuhong, et al.
Publicado: (2021) -
Combined Channel Attention and Spatial Attention Module Network for Chinese Herbal Slices Automated Recognition
por: Wang, Jianqing, et al.
Publicado: (2022) -
Residual Spatial and Channel Attention Networks for Single Image Dehazing
por: Jiang, Xin, et al.
Publicado: (2021) -
Transformer based on channel-spatial attention for accurate classification of scenes in remote sensing image
por: Guo, Jingxia, et al.
Publicado: (2022) -
Spatial attention-based residual network for human burn identification and classification
por: Yadav, D. P., et al.
Publicado: (2023)