Cargando…
CBNA: A control theory based method for identifying coding and non-coding cancer drivers
A key task in cancer genomics research is to identify cancer driver genes. As these genes initialise and progress cancer, understanding them is critical in designing effective cancer interventions. Although there are several methods developed to discover cancer drivers, most of them only identify co...
Autores principales: | Pham, Vu V. H., Liu, Lin, Bracken, Cameron P., Goodall, Gregory J., Long, Qi, Li, Jiuyong, Le, Thuc D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6907873/ https://www.ncbi.nlm.nih.gov/pubmed/31790386 http://dx.doi.org/10.1371/journal.pcbi.1007538 |
Ejemplares similares
-
Computational methods for cancer driver discovery: A survey
por: Pham, Vu Viet Hoang, et al.
Publicado: (2021) -
Dynamic cancer drivers: a causal approach for cancer driver discovery based
on bio-pathological trajectories
por: Cifuentes-Bernal, Andres M, et al.
Publicado: (2022) -
Identifying preeclampsia-associated genes using a control theory method
por: Li, Xiaomei, et al.
Publicado: (2022) -
On the rules of engagement for microRNAs targeting protein coding regions
por: Sapkota, Sunil, et al.
Publicado: (2023) -
A novel single-cell based method for breast cancer prognosis
por: Li, Xiaomei, et al.
Publicado: (2020)