Cargando…
The Diagnostic Value of Radiomics-Based Machine Learning in Predicting the Grade of Meningiomas Using Conventional Magnetic Resonance Imaging: A Preliminary Study
Objective: The purpose of the current study is to investigate whether texture analysis-based machine learning algorithms could help devise a non-invasive imaging biomarker for accurate classification of meningiomas using machine learning algorithms. Method: The study cohort was established from the...
Autores principales: | Chen, Chaoyue, Guo, Xinyi, Wang, Jian, Guo, Wen, Ma, Xuelei, Xu, Jianguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908490/ https://www.ncbi.nlm.nih.gov/pubmed/31867272 http://dx.doi.org/10.3389/fonc.2019.01338 |
Ejemplares similares
-
Differentiation of Low-Grade Astrocytoma From Anaplastic Astrocytoma Using Radiomics-Based Machine Learning Techniques
por: Chen, Boran, et al.
Publicado: (2021) -
Ability of Radiomics in Differentiation of Anaplastic Oligodendroglioma From Atypical Low-Grade Oligodendroglioma Using Machine-Learning Approach
por: Zhang, Yang, et al.
Publicado: (2019) -
Application of Radiomics Analysis Based on CT Combined With Machine Learning in Diagnostic of Pancreatic Neuroendocrine Tumors Patient’s Pathological Grades
por: Zhang, Tao, et al.
Publicado: (2021) -
Radiomics-Based Machine Learning in Differentiation Between Glioblastoma and Metastatic Brain Tumors
por: Chen, Chaoyue, et al.
Publicado: (2019) -
Radiomics-Based Machine Learning Technology Enables Better Differentiation Between Glioblastoma and Anaplastic Oligodendroglioma
por: Fan, Yimeng, et al.
Publicado: (2019)