Cargando…
A modular cGAN classification framework: Application to colorectal tumor detection
Automatic identification of tissue structures in the analysis of digital tissue biopsies remains an ongoing problem in digital pathology. Common barriers include lack of reliable ground truth due to inter- and intra- reader variability, class imbalances, and inflexibility of discriminative models. T...
Autores principales: | Tavolara, Thomas E., Niazi, M. Khalid Khan, Arole, Vidya, Chen, Wei, Frankel, Wendy, Gurcan, Metin N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908583/ https://www.ncbi.nlm.nih.gov/pubmed/31831792 http://dx.doi.org/10.1038/s41598-019-55257-w |
Ejemplares similares
-
Author Correction: A modular cGAN classification framework: Application to colorectal tumor detection
por: Tavolara, Thomas E., et al.
Publicado: (2020) -
Optimized generation of high-resolution phantom images using cGAN: Application to quantification of Ki67 breast cancer images
por: Senaras, Caglar, et al.
Publicado: (2018) -
Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning
por: Niazi, Muhammad Khalid Khan, et al.
Publicado: (2018) -
Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels
por: Tavolara, Thomas E., et al.
Publicado: (2022) -
Relationship between the Ki67 index and its area based approximation in breast cancer
por: Niazi, Muhammad Khalid Khan, et al.
Publicado: (2018)