Cargando…
Metasurface-based ultra-lightweight high-gain off-axis flat parabolic reflectarray for microwave beam collimation/focusing
Ultra-lightweight deployable antennas with high-gain are pivotal communication components for small satellites, which are intrinsically constrained in size, weight, and power. In this work, we design and demonstrate metasurface-based ultra-lightweight flat off-axis reflectarrays for microwave beam c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908700/ https://www.ncbi.nlm.nih.gov/pubmed/31831798 http://dx.doi.org/10.1038/s41598-019-55221-8 |
Sumario: | Ultra-lightweight deployable antennas with high-gain are pivotal communication components for small satellites, which are intrinsically constrained in size, weight, and power. In this work, we design and demonstrate metasurface-based ultra-lightweight flat off-axis reflectarrays for microwave beam collimation and focusing, similar to a parabolic dish-antenna. Our ultra-thin reflectarrays employ resonators of variable sizes to cover the full 2π phase range, and are arranged on the metasurface to realize a two-dimensional parabolic focusing phase distribution. We demonstrate a 30° off-axis focusing reflector that exhibits a measured gain of 27.5 dB at the central operating frequency of 11.8 GHz and a 3 dB directionality <[Formula: see text] 1.6°. Furthermore, we carry out full-wave simulations of the reflectarray, showing high gain of the beam focusing/collimation functionality, in good agreement with measurements. The demonstrated reflectarrays will enable low-cost, lightweight, and high-gain deployable transceivers for small-satellite platforms. |
---|