Cargando…

Optimized Biodiesel Production from Waste Cooking Oil (WCO) using Calcium Oxide (CaO) Nano-catalyst

Biodiesel production from waste cooking oil (WCO) provides an alternative energy means of producing liquid fuels from biomass for various uses. Biodiesel production by recycling WCO and methanol in the presence of calcium oxide (CaO) nano-catalyst offers several benefits such as economic, environmen...

Descripción completa

Detalles Bibliográficos
Autores principales: Degfie, Tadesse Anbessie, Mamo, Tadios Tesfaye, Mekonnen, Yedilfana Setarge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908722/
https://www.ncbi.nlm.nih.gov/pubmed/31831823
http://dx.doi.org/10.1038/s41598-019-55403-4
Descripción
Sumario:Biodiesel production from waste cooking oil (WCO) provides an alternative energy means of producing liquid fuels from biomass for various uses. Biodiesel production by recycling WCO and methanol in the presence of calcium oxide (CaO) nano-catalyst offers several benefits such as economic, environmental and waste management. A nano-catalyst of CaO was synthesized by thermal-decomposition method and calcinated at 500 °C followed by characterization using x-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. The XRD results revealed nano-scale crystal sizes at high purity, with a mean particle size of ~29 nm. The SEM images exhibited morphology of irregular shapes and porous structure of the synthesized nanocatalysts. The highest conversion of WCO to biodiesel was estimated to be 96%, at optimized experimental conditions i.e., 50 °C, 1:8 WCO oil to methanol ratio, 1% by weight of catalyst loading rate and 90 minutes reaction time, which is among few highest conversions reported so far. Biodiesel properties were tested according to the American (ASTM D6571) fuel standards. All reactions are carried-out under atmospheric pressure and 1500 rpm of agitation.