Cargando…
Deep learning and taphonomy: high accuracy in the classification of cut marks made on fleshed and defleshed bones using convolutional neural networks
Accurate identification of bone surface modifications (BSM) is crucial for the taphonomic understanding of archaeological and paleontological sites. Critical interpretations of when humans started eating meat and animal fat or when they started using stone tools, or when they occupied new continents...
Autores principales: | Cifuentes-Alcobendas, Gabriel, Domínguez-Rodrigo, Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908723/ https://www.ncbi.nlm.nih.gov/pubmed/31831808 http://dx.doi.org/10.1038/s41598-019-55439-6 |
Ejemplares similares
-
Artificial intelligence provides greater accuracy in the classification of modern and ancient bone surface modifications
por: Domínguez-Rodrigo, Manuel, et al.
Publicado: (2020) -
Testing accuracy in 2D and 3D geometric morphometric methods for cut mark identification and classification
por: Courtenay, Lloyd A., et al.
Publicado: (2018) -
Author Correction: Artificial intelligence provides greater accuracy in the classification of modern and ancient bone surface modifications
por: Domínguez‑Rodrigo, Manuel, et al.
Publicado: (2021) -
Taphonomy : a process approach /
por: Martin, Ronald E.
Publicado: (1999) -
Distinguishing butchery cut marks from crocodile bite marks through machine learning methods
por: Domínguez-Rodrigo, Manuel, et al.
Publicado: (2018)