Cargando…

Patient-Reported Outcomes in Online Communications on Statins, Memory, and Cognition: Qualitative Analysis Using Online Communities

BACKGROUND: In drug development clinical trials, there is a need for balance between restricting variables by setting eligibility criteria and representing the broader patient population that may use a product once it is approved. Similarly, although recent policy initiatives focusing on the inclusi...

Descripción completa

Detalles Bibliográficos
Autores principales: Timimi, Farris, Ray, Sara, Jones, Erik, Aase, Lee, Hoffman, Kathleen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908973/
https://www.ncbi.nlm.nih.gov/pubmed/31778117
http://dx.doi.org/10.2196/14809
Descripción
Sumario:BACKGROUND: In drug development clinical trials, there is a need for balance between restricting variables by setting eligibility criteria and representing the broader patient population that may use a product once it is approved. Similarly, although recent policy initiatives focusing on the inclusion of historically underrepresented groups are being implemented, barriers still remain. These limitations of clinical trials may mask potential product benefits and side effects. To bridge these gaps, online communication in health communities may serve as an additional population signal for drug side effects. OBJECTIVE: The aim of this study was to employ a nontraditional dataset to identify drug side-effect signals. The study was designed to apply both natural language processing (NLP) technology and hands-on linguistic analysis to a set of online posts from known statin users to (1) identify any underlying crossover between the use of statins and impairment of memory or cognition and (2) obtain patient lexicon in their descriptions of experiences with statin medications and memory changes. METHODS: Researchers utilized user-generated content on Inspire, looking at over 11 million posts across Inspire. Posts were written by patients and caregivers belonging to a variety of communities on Inspire. After identifying these posts, researchers used NLP and hands-on linguistic analysis to draw and expand upon correlations among statin use, memory, and cognition. RESULTS: NLP analysis of posts identified statistical correlations between statin users and the discussion of memory impairment, which were not observed in control groups. NLP found that, out of all members on Inspire, 3.1% had posted about memory or cognition. In a control group of those who had posted about TNF inhibitors, 6.2% had also posted about memory and cognition. In comparison, of all those who had posted about a statin medication, 22.6% (P<.001) also posted about memory and cognition. Furthermore, linguistic analysis of a sample of posts provided themes and context to these statistical findings. By looking at posts from statin users about memory, four key themes were found and described in detail in the data: memory loss, aphasia, cognitive impairment, and emotional change. CONCLUSIONS: Correlations from this study point to a need for further research on the impact of statins on memory and cognition. Furthermore, when using nontraditional datasets, such as online communities, NLP and linguistic methodologies broaden the population for identifying side-effect signals. For side effects such as those on memory and cognition, where self-reporting may be unreliable, these methods can provide another avenue to inform patients, providers, and the Food and Drug Administration.