Cargando…
Mediation of Electron Transfer by Quadrupolar Interactions: The Constitutional, Electronic, and Energetic Complementarities in Supramolecular Chemistry
Studies of intermolecular interactions enhance our knowledge of chemistry across molecular and supramolecular levels. Here, we show that host-guest quadrupolar interaction has a profound influence on the molecular system. With covalently bonded dimolybdenum complex units as the electron donor (D) an...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909048/ https://www.ncbi.nlm.nih.gov/pubmed/31805432 http://dx.doi.org/10.1016/j.isci.2019.11.020 |
Sumario: | Studies of intermolecular interactions enhance our knowledge of chemistry across molecular and supramolecular levels. Here, we show that host-guest quadrupolar interaction has a profound influence on the molecular system. With covalently bonded dimolybdenum complex units as the electron donor (D) and acceptor (A) and a thienylene group (C(4)H(2)S) as the bridge (B), the mixed-valence D-B-A complexes are shaped with clefts in the middle of the molecule. Interestingly, in aromatic solvents, the D-A electronic coupling constants (H(ab)) and electron transfer rates (k(et)) are dramatically reduced. Theoretical computations indicate that an aromatic molecule is encapsulated in the cleft of the D-B-A array; quadrupole-quadrupole interaction between the guest molecule and the C(4)H(2)S bridge evokes a charge redistribution, which increases the HOMO-LUMO energy gap, intervening in the through-bond electron transfer. These results demonstrate that a supramolecular system is unified underlying the characteristics of the assembled molecules through constitutional, electronic, and energetic complementarities. |
---|