Cargando…
Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks
MR images of infants and fetuses allow non-invasive analysis of the brain. Quantitative analysis of brain development requires automatic brain tissue segmentation that is typically preceded by segmentation of the intracranial volume (ICV). Fast changes in the size and morphology of the developing br...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909142/ https://www.ncbi.nlm.nih.gov/pubmed/31835284 http://dx.doi.org/10.1016/j.nicl.2019.102061 |
_version_ | 1783478894408499200 |
---|---|
author | Khalili, Nadieh Turk, E. Benders, M.J.N.L. Moeskops, P. Claessens, N.H.P. de Heus, R. Franx, A. Wagenaar, N. Breur, J.M.P.J. Viergever, M.A. Išgum, I. |
author_facet | Khalili, Nadieh Turk, E. Benders, M.J.N.L. Moeskops, P. Claessens, N.H.P. de Heus, R. Franx, A. Wagenaar, N. Breur, J.M.P.J. Viergever, M.A. Išgum, I. |
author_sort | Khalili, Nadieh |
collection | PubMed |
description | MR images of infants and fetuses allow non-invasive analysis of the brain. Quantitative analysis of brain development requires automatic brain tissue segmentation that is typically preceded by segmentation of the intracranial volume (ICV). Fast changes in the size and morphology of the developing brain, motion artifacts, and large variation in the field of view make ICV segmentation a challenging task. We propose an automatic method for segmentation of the ICV in fetal and neonatal MRI scans. The method was developed and tested with a diverse set of scans regarding image acquisition parameters (i.e. field strength, image acquisition plane, image resolution), infant age (23–45 weeks post menstrual age), and pathology (posthaemorrhagic ventricular dilatation, stroke, asphyxia, and Down syndrome). The results demonstrate that the method achieves accurate segmentation with a Dice coefficient (DC) ranging from 0.98 to 0.99 in neonatal and fetal scans regardless of image acquisition parameters or patient characteristics. Hence, the algorithm provides a generic tool for segmentation of the ICV that may be used as a preprocessing step for brain tissue segmentation in fetal and neonatal brain MR scans. |
format | Online Article Text |
id | pubmed-6909142 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-69091422019-12-23 Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks Khalili, Nadieh Turk, E. Benders, M.J.N.L. Moeskops, P. Claessens, N.H.P. de Heus, R. Franx, A. Wagenaar, N. Breur, J.M.P.J. Viergever, M.A. Išgum, I. Neuroimage Clin Regular Article MR images of infants and fetuses allow non-invasive analysis of the brain. Quantitative analysis of brain development requires automatic brain tissue segmentation that is typically preceded by segmentation of the intracranial volume (ICV). Fast changes in the size and morphology of the developing brain, motion artifacts, and large variation in the field of view make ICV segmentation a challenging task. We propose an automatic method for segmentation of the ICV in fetal and neonatal MRI scans. The method was developed and tested with a diverse set of scans regarding image acquisition parameters (i.e. field strength, image acquisition plane, image resolution), infant age (23–45 weeks post menstrual age), and pathology (posthaemorrhagic ventricular dilatation, stroke, asphyxia, and Down syndrome). The results demonstrate that the method achieves accurate segmentation with a Dice coefficient (DC) ranging from 0.98 to 0.99 in neonatal and fetal scans regardless of image acquisition parameters or patient characteristics. Hence, the algorithm provides a generic tool for segmentation of the ICV that may be used as a preprocessing step for brain tissue segmentation in fetal and neonatal brain MR scans. Elsevier 2019-11-09 /pmc/articles/PMC6909142/ /pubmed/31835284 http://dx.doi.org/10.1016/j.nicl.2019.102061 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Regular Article Khalili, Nadieh Turk, E. Benders, M.J.N.L. Moeskops, P. Claessens, N.H.P. de Heus, R. Franx, A. Wagenaar, N. Breur, J.M.P.J. Viergever, M.A. Išgum, I. Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks |
title | Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks |
title_full | Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks |
title_fullStr | Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks |
title_full_unstemmed | Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks |
title_short | Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks |
title_sort | automatic extraction of the intracranial volume in fetal and neonatal mr scans using convolutional neural networks |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909142/ https://www.ncbi.nlm.nih.gov/pubmed/31835284 http://dx.doi.org/10.1016/j.nicl.2019.102061 |
work_keys_str_mv | AT khalilinadieh automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks AT turke automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks AT bendersmjnl automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks AT moeskopsp automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks AT claessensnhp automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks AT deheusr automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks AT franxa automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks AT wagenaarn automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks AT breurjmpj automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks AT viergeverma automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks AT isgumi automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks |