Cargando…

Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks

MR images of infants and fetuses allow non-invasive analysis of the brain. Quantitative analysis of brain development requires automatic brain tissue segmentation that is typically preceded by segmentation of the intracranial volume (ICV). Fast changes in the size and morphology of the developing br...

Descripción completa

Detalles Bibliográficos
Autores principales: Khalili, Nadieh, Turk, E., Benders, M.J.N.L., Moeskops, P., Claessens, N.H.P., de Heus, R., Franx, A., Wagenaar, N., Breur, J.M.P.J., Viergever, M.A., Išgum, I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909142/
https://www.ncbi.nlm.nih.gov/pubmed/31835284
http://dx.doi.org/10.1016/j.nicl.2019.102061
_version_ 1783478894408499200
author Khalili, Nadieh
Turk, E.
Benders, M.J.N.L.
Moeskops, P.
Claessens, N.H.P.
de Heus, R.
Franx, A.
Wagenaar, N.
Breur, J.M.P.J.
Viergever, M.A.
Išgum, I.
author_facet Khalili, Nadieh
Turk, E.
Benders, M.J.N.L.
Moeskops, P.
Claessens, N.H.P.
de Heus, R.
Franx, A.
Wagenaar, N.
Breur, J.M.P.J.
Viergever, M.A.
Išgum, I.
author_sort Khalili, Nadieh
collection PubMed
description MR images of infants and fetuses allow non-invasive analysis of the brain. Quantitative analysis of brain development requires automatic brain tissue segmentation that is typically preceded by segmentation of the intracranial volume (ICV). Fast changes in the size and morphology of the developing brain, motion artifacts, and large variation in the field of view make ICV segmentation a challenging task. We propose an automatic method for segmentation of the ICV in fetal and neonatal MRI scans. The method was developed and tested with a diverse set of scans regarding image acquisition parameters (i.e. field strength, image acquisition plane, image resolution), infant age (23–45 weeks post menstrual age), and pathology (posthaemorrhagic ventricular dilatation, stroke, asphyxia, and Down syndrome). The results demonstrate that the method achieves accurate segmentation with a Dice coefficient (DC) ranging from 0.98 to 0.99 in neonatal and fetal scans regardless of image acquisition parameters or patient characteristics. Hence, the algorithm provides a generic tool for segmentation of the ICV that may be used as a preprocessing step for brain tissue segmentation in fetal and neonatal brain MR scans.
format Online
Article
Text
id pubmed-6909142
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-69091422019-12-23 Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks Khalili, Nadieh Turk, E. Benders, M.J.N.L. Moeskops, P. Claessens, N.H.P. de Heus, R. Franx, A. Wagenaar, N. Breur, J.M.P.J. Viergever, M.A. Išgum, I. Neuroimage Clin Regular Article MR images of infants and fetuses allow non-invasive analysis of the brain. Quantitative analysis of brain development requires automatic brain tissue segmentation that is typically preceded by segmentation of the intracranial volume (ICV). Fast changes in the size and morphology of the developing brain, motion artifacts, and large variation in the field of view make ICV segmentation a challenging task. We propose an automatic method for segmentation of the ICV in fetal and neonatal MRI scans. The method was developed and tested with a diverse set of scans regarding image acquisition parameters (i.e. field strength, image acquisition plane, image resolution), infant age (23–45 weeks post menstrual age), and pathology (posthaemorrhagic ventricular dilatation, stroke, asphyxia, and Down syndrome). The results demonstrate that the method achieves accurate segmentation with a Dice coefficient (DC) ranging from 0.98 to 0.99 in neonatal and fetal scans regardless of image acquisition parameters or patient characteristics. Hence, the algorithm provides a generic tool for segmentation of the ICV that may be used as a preprocessing step for brain tissue segmentation in fetal and neonatal brain MR scans. Elsevier 2019-11-09 /pmc/articles/PMC6909142/ /pubmed/31835284 http://dx.doi.org/10.1016/j.nicl.2019.102061 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Regular Article
Khalili, Nadieh
Turk, E.
Benders, M.J.N.L.
Moeskops, P.
Claessens, N.H.P.
de Heus, R.
Franx, A.
Wagenaar, N.
Breur, J.M.P.J.
Viergever, M.A.
Išgum, I.
Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks
title Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks
title_full Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks
title_fullStr Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks
title_full_unstemmed Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks
title_short Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks
title_sort automatic extraction of the intracranial volume in fetal and neonatal mr scans using convolutional neural networks
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909142/
https://www.ncbi.nlm.nih.gov/pubmed/31835284
http://dx.doi.org/10.1016/j.nicl.2019.102061
work_keys_str_mv AT khalilinadieh automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks
AT turke automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks
AT bendersmjnl automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks
AT moeskopsp automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks
AT claessensnhp automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks
AT deheusr automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks
AT franxa automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks
AT wagenaarn automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks
AT breurjmpj automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks
AT viergeverma automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks
AT isgumi automaticextractionoftheintracranialvolumeinfetalandneonatalmrscansusingconvolutionalneuralnetworks