Cargando…

Tunable Coupling and Isolation of Single Electrons in Silicon Metal-Oxide-Semiconductor Quantum Dots

[Image: see text] Extremely long coherence times, excellent single-qubit gate fidelities, and two-qubit logic have been demonstrated with silicon metal-oxide-semiconductor spin qubits, making it one of the leading platforms for quantum information processing. Despite this, a long-standing challenge...

Descripción completa

Detalles Bibliográficos
Autores principales: Eenink, H. G. J., Petit, L., Lawrie, W. I. L., Clarke, J. S., Vandersypen, L. M. K., Veldhorst, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909234/
https://www.ncbi.nlm.nih.gov/pubmed/31755273
http://dx.doi.org/10.1021/acs.nanolett.9b03254
_version_ 1783478916693884928
author Eenink, H. G. J.
Petit, L.
Lawrie, W. I. L.
Clarke, J. S.
Vandersypen, L. M. K.
Veldhorst, M.
author_facet Eenink, H. G. J.
Petit, L.
Lawrie, W. I. L.
Clarke, J. S.
Vandersypen, L. M. K.
Veldhorst, M.
author_sort Eenink, H. G. J.
collection PubMed
description [Image: see text] Extremely long coherence times, excellent single-qubit gate fidelities, and two-qubit logic have been demonstrated with silicon metal-oxide-semiconductor spin qubits, making it one of the leading platforms for quantum information processing. Despite this, a long-standing challenge in this system has been the demonstration of tunable tunnel coupling between single electrons. Here we overcome this hurdle with gate-defined quantum dots and show couplings that can be tuned on and off for quantum operations. We use charge sensing to discriminate between the (2,0) and (1,1) charge states of a double quantum dot and show excellent charge sensitivity. We demonstrate tunable coupling up to 13 GHz, obtained by fitting charge polarization lines, and tunable tunnel rates down to <1 Hz, deduced from the random telegraph signal. The demonstration of tunable coupling between single electrons in a silicon metal-oxide-semiconductor device provides significant scope for high-fidelity two-qubit logic toward quantum information processing with standard manufacturing.
format Online
Article
Text
id pubmed-6909234
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-69092342019-12-19 Tunable Coupling and Isolation of Single Electrons in Silicon Metal-Oxide-Semiconductor Quantum Dots Eenink, H. G. J. Petit, L. Lawrie, W. I. L. Clarke, J. S. Vandersypen, L. M. K. Veldhorst, M. Nano Lett [Image: see text] Extremely long coherence times, excellent single-qubit gate fidelities, and two-qubit logic have been demonstrated with silicon metal-oxide-semiconductor spin qubits, making it one of the leading platforms for quantum information processing. Despite this, a long-standing challenge in this system has been the demonstration of tunable tunnel coupling between single electrons. Here we overcome this hurdle with gate-defined quantum dots and show couplings that can be tuned on and off for quantum operations. We use charge sensing to discriminate between the (2,0) and (1,1) charge states of a double quantum dot and show excellent charge sensitivity. We demonstrate tunable coupling up to 13 GHz, obtained by fitting charge polarization lines, and tunable tunnel rates down to <1 Hz, deduced from the random telegraph signal. The demonstration of tunable coupling between single electrons in a silicon metal-oxide-semiconductor device provides significant scope for high-fidelity two-qubit logic toward quantum information processing with standard manufacturing. American Chemical Society 2019-11-22 2019-12-11 /pmc/articles/PMC6909234/ /pubmed/31755273 http://dx.doi.org/10.1021/acs.nanolett.9b03254 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Eenink, H. G. J.
Petit, L.
Lawrie, W. I. L.
Clarke, J. S.
Vandersypen, L. M. K.
Veldhorst, M.
Tunable Coupling and Isolation of Single Electrons in Silicon Metal-Oxide-Semiconductor Quantum Dots
title Tunable Coupling and Isolation of Single Electrons in Silicon Metal-Oxide-Semiconductor Quantum Dots
title_full Tunable Coupling and Isolation of Single Electrons in Silicon Metal-Oxide-Semiconductor Quantum Dots
title_fullStr Tunable Coupling and Isolation of Single Electrons in Silicon Metal-Oxide-Semiconductor Quantum Dots
title_full_unstemmed Tunable Coupling and Isolation of Single Electrons in Silicon Metal-Oxide-Semiconductor Quantum Dots
title_short Tunable Coupling and Isolation of Single Electrons in Silicon Metal-Oxide-Semiconductor Quantum Dots
title_sort tunable coupling and isolation of single electrons in silicon metal-oxide-semiconductor quantum dots
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909234/
https://www.ncbi.nlm.nih.gov/pubmed/31755273
http://dx.doi.org/10.1021/acs.nanolett.9b03254
work_keys_str_mv AT eeninkhgj tunablecouplingandisolationofsingleelectronsinsiliconmetaloxidesemiconductorquantumdots
AT petitl tunablecouplingandisolationofsingleelectronsinsiliconmetaloxidesemiconductorquantumdots
AT lawriewil tunablecouplingandisolationofsingleelectronsinsiliconmetaloxidesemiconductorquantumdots
AT clarkejs tunablecouplingandisolationofsingleelectronsinsiliconmetaloxidesemiconductorquantumdots
AT vandersypenlmk tunablecouplingandisolationofsingleelectronsinsiliconmetaloxidesemiconductorquantumdots
AT veldhorstm tunablecouplingandisolationofsingleelectronsinsiliconmetaloxidesemiconductorquantumdots