Cargando…
Tunable Coupling and Isolation of Single Electrons in Silicon Metal-Oxide-Semiconductor Quantum Dots
[Image: see text] Extremely long coherence times, excellent single-qubit gate fidelities, and two-qubit logic have been demonstrated with silicon metal-oxide-semiconductor spin qubits, making it one of the leading platforms for quantum information processing. Despite this, a long-standing challenge...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909234/ https://www.ncbi.nlm.nih.gov/pubmed/31755273 http://dx.doi.org/10.1021/acs.nanolett.9b03254 |
_version_ | 1783478916693884928 |
---|---|
author | Eenink, H. G. J. Petit, L. Lawrie, W. I. L. Clarke, J. S. Vandersypen, L. M. K. Veldhorst, M. |
author_facet | Eenink, H. G. J. Petit, L. Lawrie, W. I. L. Clarke, J. S. Vandersypen, L. M. K. Veldhorst, M. |
author_sort | Eenink, H. G. J. |
collection | PubMed |
description | [Image: see text] Extremely long coherence times, excellent single-qubit gate fidelities, and two-qubit logic have been demonstrated with silicon metal-oxide-semiconductor spin qubits, making it one of the leading platforms for quantum information processing. Despite this, a long-standing challenge in this system has been the demonstration of tunable tunnel coupling between single electrons. Here we overcome this hurdle with gate-defined quantum dots and show couplings that can be tuned on and off for quantum operations. We use charge sensing to discriminate between the (2,0) and (1,1) charge states of a double quantum dot and show excellent charge sensitivity. We demonstrate tunable coupling up to 13 GHz, obtained by fitting charge polarization lines, and tunable tunnel rates down to <1 Hz, deduced from the random telegraph signal. The demonstration of tunable coupling between single electrons in a silicon metal-oxide-semiconductor device provides significant scope for high-fidelity two-qubit logic toward quantum information processing with standard manufacturing. |
format | Online Article Text |
id | pubmed-6909234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-69092342019-12-19 Tunable Coupling and Isolation of Single Electrons in Silicon Metal-Oxide-Semiconductor Quantum Dots Eenink, H. G. J. Petit, L. Lawrie, W. I. L. Clarke, J. S. Vandersypen, L. M. K. Veldhorst, M. Nano Lett [Image: see text] Extremely long coherence times, excellent single-qubit gate fidelities, and two-qubit logic have been demonstrated with silicon metal-oxide-semiconductor spin qubits, making it one of the leading platforms for quantum information processing. Despite this, a long-standing challenge in this system has been the demonstration of tunable tunnel coupling between single electrons. Here we overcome this hurdle with gate-defined quantum dots and show couplings that can be tuned on and off for quantum operations. We use charge sensing to discriminate between the (2,0) and (1,1) charge states of a double quantum dot and show excellent charge sensitivity. We demonstrate tunable coupling up to 13 GHz, obtained by fitting charge polarization lines, and tunable tunnel rates down to <1 Hz, deduced from the random telegraph signal. The demonstration of tunable coupling between single electrons in a silicon metal-oxide-semiconductor device provides significant scope for high-fidelity two-qubit logic toward quantum information processing with standard manufacturing. American Chemical Society 2019-11-22 2019-12-11 /pmc/articles/PMC6909234/ /pubmed/31755273 http://dx.doi.org/10.1021/acs.nanolett.9b03254 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Eenink, H. G. J. Petit, L. Lawrie, W. I. L. Clarke, J. S. Vandersypen, L. M. K. Veldhorst, M. Tunable Coupling and Isolation of Single Electrons in Silicon Metal-Oxide-Semiconductor Quantum Dots |
title | Tunable Coupling
and Isolation of Single Electrons
in Silicon Metal-Oxide-Semiconductor Quantum Dots |
title_full | Tunable Coupling
and Isolation of Single Electrons
in Silicon Metal-Oxide-Semiconductor Quantum Dots |
title_fullStr | Tunable Coupling
and Isolation of Single Electrons
in Silicon Metal-Oxide-Semiconductor Quantum Dots |
title_full_unstemmed | Tunable Coupling
and Isolation of Single Electrons
in Silicon Metal-Oxide-Semiconductor Quantum Dots |
title_short | Tunable Coupling
and Isolation of Single Electrons
in Silicon Metal-Oxide-Semiconductor Quantum Dots |
title_sort | tunable coupling
and isolation of single electrons
in silicon metal-oxide-semiconductor quantum dots |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909234/ https://www.ncbi.nlm.nih.gov/pubmed/31755273 http://dx.doi.org/10.1021/acs.nanolett.9b03254 |
work_keys_str_mv | AT eeninkhgj tunablecouplingandisolationofsingleelectronsinsiliconmetaloxidesemiconductorquantumdots AT petitl tunablecouplingandisolationofsingleelectronsinsiliconmetaloxidesemiconductorquantumdots AT lawriewil tunablecouplingandisolationofsingleelectronsinsiliconmetaloxidesemiconductorquantumdots AT clarkejs tunablecouplingandisolationofsingleelectronsinsiliconmetaloxidesemiconductorquantumdots AT vandersypenlmk tunablecouplingandisolationofsingleelectronsinsiliconmetaloxidesemiconductorquantumdots AT veldhorstm tunablecouplingandisolationofsingleelectronsinsiliconmetaloxidesemiconductorquantumdots |