Cargando…
IDLDA: An Improved Diffusion Model for Predicting LncRNA–Disease Associations
It has been demonstrated that long non-coding RNAs (lncRNAs) play important roles in a variety of biological processes associated with human diseases. However, the identification of lncRNA–disease associations by experimental methods is time-consuming and labor-intensive. Computational methods provi...
Autores principales: | Wang, Qi, Yan, Guiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909379/ https://www.ncbi.nlm.nih.gov/pubmed/31867043 http://dx.doi.org/10.3389/fgene.2019.01259 |
Ejemplares similares
-
Corrigendum: IDLDA: An Improved Diffusion Model for Predicting LncRNA–Disease Associations
por: Wang, Qi, et al.
Publicado: (2020) -
Multiview Consensus Graph Learning for lncRNA–Disease Association Prediction
por: Tan, Haojiang, et al.
Publicado: (2020) -
LncRNA-Disease Association Prediction Using Two-Side Sparse Self-Representation
por: Ou-Yang, Le, et al.
Publicado: (2019) -
LITHOPHONE: Improving lncRNA Methylation Site Prediction Using an Ensemble Predictor
por: Liu, Lian, et al.
Publicado: (2020) -
Geometric complement heterogeneous information and random forest for predicting lncRNA-disease associations
por: Yao, Dengju, et al.
Publicado: (2022)