Cargando…
DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network
BACKGROUND: Calling genetic variations from sequence reads is an important problem in genomics. There are many existing methods for calling various types of variations. Recently, Google developed a method for calling single nucleotide polymorphisms (SNPs) based on deep learning. Their method visuali...
Autores principales: | Cai, Lei, Wu, Yufeng, Gao, Jingyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909530/ https://www.ncbi.nlm.nih.gov/pubmed/31830921 http://dx.doi.org/10.1186/s12859-019-3299-y |
Ejemplares similares
-
DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers
por: Chen, Shengquan, et al.
Publicado: (2021) -
Deep convolutional neural networks for accurate somatic mutation detection
por: Sahraeian, Sayed Mohammad Ebrahim, et al.
Publicado: (2019) -
A multi-task convolutional deep neural network for variant calling in single molecule sequencing
por: Luo, Ruibang, et al.
Publicado: (2019) -
Accurate brain tumor detection using deep convolutional neural network
por: Khan, Md. Saikat Islam, et al.
Publicado: (2022) -
High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks
por: Rajkomar, Alvin, et al.
Publicado: (2016)