Cargando…

CXCL12 is involved in α-synuclein-triggered neuroinflammation of Parkinson’s disease

BACKGROUND: The mechanisms underlying the pathogenesis and progression of Parkinson’s disease (PD) remain elusive, but recent opinions and perspectives have focused on whether the inflammation process induced by microglia contributes to α-synuclein-mediated toxicity. Migration of microglia to the su...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yuanyuan, Niu, Mengyue, Zhao, Aonan, Kang, Wenyan, Chen, Zhichun, Luo, Ningdi, Zhou, Liche, Zhu, Xiongwei, Lu, Liming, Liu, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909602/
https://www.ncbi.nlm.nih.gov/pubmed/31831012
http://dx.doi.org/10.1186/s12974-019-1646-6
Descripción
Sumario:BACKGROUND: The mechanisms underlying the pathogenesis and progression of Parkinson’s disease (PD) remain elusive, but recent opinions and perspectives have focused on whether the inflammation process induced by microglia contributes to α-synuclein-mediated toxicity. Migration of microglia to the substantia nigra (SN) could precede neurodegeneration in A53T mice. We hypothesized that CXCL12 could be a mediator in the α-synuclein-induced migration of microglia. METHODS: After establishing appropriate animal and cell culture models, we explored the relationship between α-synuclein and CXCL12 in A53T mice, primary microglia, and BV-2 cell lines. We also explored the mechanisms of these interactions and the signaling processes involved in neuroinflammation. RESULTS: We confirmed the positive correlation between α-synuclein and CXCL12 in the postmortem brain tissue of PD patients and the upregulated CXCR4 expression in SN microglia of A53T mice. In addition, as expected, α-synuclein increased the production of CXCL12 in microglia via TLR4/IκB-α/NF-κB signaling. Importantly, CXCL12/CXCR4/FAK/Src/Rac1 signaling was shown to be involved in α-synuclein-induced microglial accumulation. CONCLUSIONS: Our study suggests that CXCL12 could be a novel target for the prevention of α-synuclein-triggered ongoing microglial responses. Blocking CXCL12/CXCR4 may be a potential therapeutic approach for PD progression.