Cargando…
Super-resolution recurrent convolutional neural networks for learning with multi-resolution whole slide images
We study a problem scenario of super-resolution (SR) algorithms in the context of whole slide imaging (WSI), a popular imaging modality in digital pathology. Instead of just one pair of high- and low-resolution images, which is typically the setup in which SR algorithms are designed, we are given mu...
Autores principales: | Mukherjee, Lopamudra, Bui, Huu Dat, Keikhosravi, Adib, Loeffler, Agnes, Eliceiri, Kevin W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6910074/ https://www.ncbi.nlm.nih.gov/pubmed/31837128 http://dx.doi.org/10.1117/1.JBO.24.12.126003 |
Ejemplares similares
-
Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks
por: Bándi, Péter, et al.
Publicado: (2019) -
Unsupervised super-resolution reconstruction of hyperspectral histology images for whole-slide imaging
por: Ma, Ling, et al.
Publicado: (2022) -
Sparse convolutional neural network for high-resolution skull shape completion and shape super-resolution
por: Li, Jianning, et al.
Publicado: (2023) -
Unsupervised super-resolution reconstruction of hyperspectral histology images for whole-slide imaging (Errata)
por: Ma, Ling, et al.
Publicado: (2022) -
Instant multicolor super-resolution microscopy with deep convolutional neural network
por: Wang, Songyue, et al.
Publicado: (2021)