Cargando…
An evaluation of different classification algorithms for protein sequence-based reverse vaccinology prediction
Previous work has shown that proteins that have the potential to be vaccine candidates can be predicted from features derived from their amino acid sequences. In this work, we make an empirical comparison across various machine learning classifiers on this sequence-based inference problem. Using sys...
Autores principales: | Heinson, Ashley I., Ewing, Rob M., Holloway, John W., Woelk, Christopher H., Niranjan, Mahesan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6910663/ https://www.ncbi.nlm.nih.gov/pubmed/31834914 http://dx.doi.org/10.1371/journal.pone.0226256 |
Ejemplares similares
-
Enhancing the Biological Relevance of Machine Learning Classifiers for Reverse Vaccinology
por: Heinson, Ashley I., et al.
Publicado: (2017) -
TransformerGO: predicting protein–protein interactions by modelling the attention between sets of gene ontology terms
por: Ieremie, Ioan, et al.
Publicado: (2022) -
Editorial: Reverse Vaccinology
por: Moxon, Richard, et al.
Publicado: (2019) -
NERVE: New Enhanced Reverse Vaccinology Environment
por: Vivona, Sandro, et al.
Publicado: (2006) -
Reverse Vaccinology: An Approach for Identifying Leptospiral Vaccine Candidates
por: Dellagostin, Odir A., et al.
Publicado: (2017)