Cargando…
Robust, automated sleep scoring by a compact neural network with distributional shift correction
Studying the biology of sleep requires the accurate assessment of the state of experimental subjects, and manual analysis of relevant data is a major bottleneck. Recently, deep learning applied to electroencephalogram and electromyogram data has shown great promise as a sleep scoring method, approac...
Autores principales: | Barger, Zeke, Frye, Charles G., Liu, Danqian, Dan, Yang, Bouchard, Kristofer E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6910668/ https://www.ncbi.nlm.nih.gov/pubmed/31834897 http://dx.doi.org/10.1371/journal.pone.0224642 |
Ejemplares similares
-
Robust Neural Automated Essay Scoring Using Item Response Theory
por: Uto, Masaki, et al.
Publicado: (2020) -
Automated multi-model deep neural network for sleep stage scoring with unfiltered clinical data
por: Zhang, Xiaoqing, et al.
Publicado: (2020) -
Sleep scoring moving from visual scoring towards automated scoring
por: Penzel, Thomas
Publicado: (2022) -
Multi-scored sleep databases: how to exploit the multiple-labels in automated sleep scoring
por: Fiorillo, Luigi, et al.
Publicado: (2023) -
Robust and distributed neural representation of action values
por: Shin, Eun Ju, et al.
Publicado: (2021)