Cargando…
An investigation of machine learning methods in delta-radiomics feature analysis
PURPOSE: This study aimed to investigate the effectiveness of using delta-radiomics to predict overall survival (OS) for patients with recurrent malignant gliomas treated by concurrent stereotactic radiosurgery and bevacizumab, and to investigate the effectiveness of machine learning methods for del...
Autores principales: | Chang, Yushi, Lafata, Kyle, Sun, Wenzheng, Wang, Chunhao, Chang, Zheng, Kirkpatrick, John P., Yin, Fang-Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6910670/ https://www.ncbi.nlm.nih.gov/pubmed/31834910 http://dx.doi.org/10.1371/journal.pone.0226348 |
Ejemplares similares
-
Effect of machine learning methods on predicting NSCLC overall survival time based on Radiomics analysis
por: Sun, Wenzheng, et al.
Publicado: (2018) -
Dose-Distribution-Driven PET Image-Based Outcome Prediction (DDD-PIOP): A Deep Learning Study for Oropharyngeal Cancer IMRT Application
por: Wang, Chunhao, et al.
Publicado: (2020) -
Post-Radiotherapy PET Image Outcome Prediction by Deep Learning Under Biological Model Guidance: A Feasibility Study of Oropharyngeal Cancer Application
por: Ji, Hangjie, et al.
Publicado: (2022) -
An Exploratory Radiomics Approach to Quantifying Pulmonary Function in CT Images
por: Lafata, Kyle J., et al.
Publicado: (2019) -
Development of a multi-feature-combined model: proof-of-concept with application to local failure prediction of post-SBRT or surgery early-stage NSCLC patients
por: Yang, Zhenyu, et al.
Publicado: (2023)