Cargando…
Unsupervised Pre-training of a Deep LSTM-based Stacked Autoencoder for Multivariate Time Series Forecasting Problems
Currently, most real-world time series datasets are multivariate and are rich in dynamical information of the underlying system. Such datasets are attracting much attention; therefore, the need for accurate modelling of such high-dimensional datasets is increasing. Recently, the deep architecture of...
Autores principales: | Sagheer, Alaa, Kotb, Mostafa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6911101/ https://www.ncbi.nlm.nih.gov/pubmed/31836728 http://dx.doi.org/10.1038/s41598-019-55320-6 |
Ejemplares similares
-
Deep LSTM-Based Transfer Learning Approach for Coherent Forecasts in Hierarchical Time Series
por: Sagheer, Alaa, et al.
Publicado: (2021) -
Variational-LSTM autoencoder to forecast the spread of coronavirus across the globe
por: Ibrahim, Mohamed R., et al.
Publicado: (2021) -
Deep Multivariate Time Series Embedding Clustering via Attentive-Gated Autoencoder
por: Ienco, Dino, et al.
Publicado: (2020) -
AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders
por: Sajadi, Seyedeh Zahra, et al.
Publicado: (2021) -
Entanglement-Structured LSTM Boosts Chaotic Time Series Forecasting
por: Meng, Xiangyi, et al.
Publicado: (2021)