Cargando…
Crosstalk between autophagy and apoptosis induced by camphor in Schizosaccharomyces pombe
Camphor is widely used in pharmacy, the food industry, and cosmetics. In this study, we evaluate inhibitory and cytotoxic effects of camphor in the fission yeast (Schizosaccharomyces pombe), which presents a unicellular model in mechanistic toxicology and cell biology. Low-dose camphor exposure (0.4...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Scientific and Technological Research Council of Turkey
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6911262/ https://www.ncbi.nlm.nih.gov/pubmed/31892813 http://dx.doi.org/10.3906/biy-1908-11 |
Sumario: | Camphor is widely used in pharmacy, the food industry, and cosmetics. In this study, we evaluate inhibitory and cytotoxic effects of camphor in the fission yeast (Schizosaccharomyces pombe), which presents a unicellular model in mechanistic toxicology and cell biology. Low-dose camphor exposure (0.4 mg/mL) activated autophagy, which was shown by GFP-Atg8 dots and transcriptional upregulation of Atg6 (Beclin-1 ortholog). Autophagy was also confirmed by using autophagy-deficient cells, which showed reduction in GFP-Atg8 dot formation. However, high-dose camphor exposure (0.8 mg/mL) caused dramatic cell death ratios, demonstrated by spot and colony-forming assays, even in autophagy-deficient cells. To unravel the underlying mechanism, this time, apoptosis-deficient cells were exposed to low- and high-dose camphor. Apoptosis was also confirmed by acridine orange/ethidium bromide staining. Among yeast apoptosis mediators, Aif1 was found to mediate camphor-induced cell death. In conclusion, differential regulation of autophagy and apoptosis, and switches between them, were found to be dose-dependent. The potential effects of camphor on autophagy and apoptotic cell death and underlying mechanisms were clarified in basic unicellular eukaryotic model, S. pombe. |
---|