Cargando…
Simulated predation pressure in Pelobates cultripes tadpoles modulates morphology at the metamorphic stage
Studies on the impacts of variation of biotic interactions at key life cycle stages are crucial to understand the interface between ecological and developmental processes. Predators exert a major impact on prey fitness. Although direct consumption entails the greatest effect, predators can affect pr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6911851/ https://www.ncbi.nlm.nih.gov/pubmed/31857812 http://dx.doi.org/10.1093/cz/zoy097 |
Sumario: | Studies on the impacts of variation of biotic interactions at key life cycle stages are crucial to understand the interface between ecological and developmental processes. Predators exert a major impact on prey fitness. Although direct consumption entails the greatest effect, predators can affect prey by means of other mechanisms. For instance, injuries inflicted by failed predation attempts can jeopardize prey fitness, even beyond the short-term. In anuran tadpoles, failed predation typically results in partial tail loss, which is known to reduce swimming speed. However, the potential consequences of tadpole partial tail loss after metamorphosis remain understudied. Because tail materials could be important in conforming metamorph body, we assess the effects of tadpole partial tail loss on metamorph body size in Iberian spadefoot toads Pelobates cultripes. We clipped 55% tail length of pre-tail-resorption stage anesthetized tadpoles, and compared their body size as metamorphs with anesthetized and non-anesthetized non-tail-clipped controls. Also, we tested whether tail length correlated with metamorph body size of individuals of the control groups. Tail-clipped tadpoles produced smaller metamorphs than both controls (the bdy size of metamorphs from both controls was similar), which could incur costs in mid-term survival or time to first reproduction. This effect could be particularly important in areas with introduced predators, if autochthonous tadpoles lack defenses against them. Results suggest that materials resorbed from tadpole tail tissues might be reallocated into metamorph body, according to the negative effect of shorter tails in a correlational analysis, and clipped tails in an experimental test, on metamorph body size. |
---|