Cargando…
Freeze-Dried Royal Jelly Proteins Enhanced the Testicular Development and Spermatogenesis in Pubescent Male Mice
SIMPLE SUMMARY: Spermatogenesis and hormones secretions are serious life-threating and complicated process, which can be improve through science-based approaches. Royal jelly is a thick white milky fluid secreted by the hypopharyngeal and mandibular glands of young nurse worker bees (Apis mellifera)...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912309/ https://www.ncbi.nlm.nih.gov/pubmed/31731648 http://dx.doi.org/10.3390/ani9110977 |
_version_ | 1783479425568866304 |
---|---|
author | Shi, Zhicheng Enayatullah, Hamdard Lv, Zengpeng Dai, Hongjian Wei, Quanwei Shen, Lirong Karwand, Babrak Shi, Fangxiong |
author_facet | Shi, Zhicheng Enayatullah, Hamdard Lv, Zengpeng Dai, Hongjian Wei, Quanwei Shen, Lirong Karwand, Babrak Shi, Fangxiong |
author_sort | Shi, Zhicheng |
collection | PubMed |
description | SIMPLE SUMMARY: Spermatogenesis and hormones secretions are serious life-threating and complicated process, which can be improve through science-based approaches. Royal jelly is a thick white milky fluid secreted by the hypopharyngeal and mandibular glands of young nurse worker bees (Apis mellifera) and used to feed their queen to expand their life. The results of the study revealed that, the growth performance of testis in exposed mice to freeze-dried Royal Jelly for 35 consecutive days were significantly enhanced in moderate dose among other treated doses. However, at Post Natal Days (PNDs 14 and PNDs 21), obviously changes were observed in histological examination of the testis while at PNDs-07 no major changes were observed. The Tunnel assay showed that, less apoptotic cells were detected in the testis of mice in high dose of freeze-dried RJ and oral administration of freeze-dried royal jelly can aggravate adverse effects via tempestuous on sexual hormone secretion at both PNDs 21 and PNDs 35 respectively. ABSTRACT: Spermatogenesis and hormones secretions are crucial endocrine and physiological process for maintaining the life. Royal Jelly (RJ) bioactive components are Major Royal Jelly Proteins (MRJPs), owing exceptional biological properties. However, the effects of RJ on pup’s testicular development during neonatal and pubertal period exposure hasn’t been adequately studied. The aim of the study was to detect neonatal sexual hormones concentration and histopathological changes on testicular development of the male progeny after oral exposure to freeze-dried RJ for 35 consecutive days. After mice give birth, male pups were collected together, separated by sex, and randomly standardized to seven (7) male pups per dam. Male pups were assigned to control diet (CON group), low dose RJ (L-RJ group) diet (control diet + 125 mg/kg/day RJ), moderate dose RJ (M-RJ group) diet (control diet + 250 mg/kg/day RJ) and high dose of RJ (H-RJ group) diet (control diet + 500 mg/kg/day RJ). After weaning, male pups were continuously fed with freeze-dried RJ until the age of PNDs 35. The results revealed that, oral M-RJ (250 mg/kg/day) administration significantly (p < 0.05) increased the testis weight, the diameter of seminiferous tubule and the height of seminiferous epithelium of offspring mice at PNDs 14. However, high-dose RJ (500 mg/kg/day) decreased the diameter of seminiferous tubule but increased the height of seminiferous epithelium of male offspring (p < 0.05) at the same time point. Furthermore, oral M-RJ treatment significantly (p < 0.05) increased the testis weight and spermatogenesis at PNDs 21. Whereas, oral H-RJ treatment significantly (p < 0.05) reduced the diameter of seminiferous tubule and the height of seminiferous epithelium at PNDs 21. At PNDs 35, oral M-RJ treatment increased the testis weight, the diameter of seminiferous tubule and the level of FSH. While, high-dose of RJ reduced testis weight and size (diameter of seminiferous tubule and height of seminiferous epithelium), ratio of apoptotic germ cells and incomplete spermatogenesis collectively. In addition, sexual hormone secretions (FSH, LH, E2) were decreased after RJs treatment (L-RJ, M-RJ, H-RJ) at PNDs 21 respectively. In conclusion, the results concluded that oral administration of low and moderate doses of RJ could enhance the development of testis at neonate period until pubescent, whereas unfavorable adverse effects induced by high dose of RJ might remain. |
format | Online Article Text |
id | pubmed-6912309 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69123092020-01-02 Freeze-Dried Royal Jelly Proteins Enhanced the Testicular Development and Spermatogenesis in Pubescent Male Mice Shi, Zhicheng Enayatullah, Hamdard Lv, Zengpeng Dai, Hongjian Wei, Quanwei Shen, Lirong Karwand, Babrak Shi, Fangxiong Animals (Basel) Article SIMPLE SUMMARY: Spermatogenesis and hormones secretions are serious life-threating and complicated process, which can be improve through science-based approaches. Royal jelly is a thick white milky fluid secreted by the hypopharyngeal and mandibular glands of young nurse worker bees (Apis mellifera) and used to feed their queen to expand their life. The results of the study revealed that, the growth performance of testis in exposed mice to freeze-dried Royal Jelly for 35 consecutive days were significantly enhanced in moderate dose among other treated doses. However, at Post Natal Days (PNDs 14 and PNDs 21), obviously changes were observed in histological examination of the testis while at PNDs-07 no major changes were observed. The Tunnel assay showed that, less apoptotic cells were detected in the testis of mice in high dose of freeze-dried RJ and oral administration of freeze-dried royal jelly can aggravate adverse effects via tempestuous on sexual hormone secretion at both PNDs 21 and PNDs 35 respectively. ABSTRACT: Spermatogenesis and hormones secretions are crucial endocrine and physiological process for maintaining the life. Royal Jelly (RJ) bioactive components are Major Royal Jelly Proteins (MRJPs), owing exceptional biological properties. However, the effects of RJ on pup’s testicular development during neonatal and pubertal period exposure hasn’t been adequately studied. The aim of the study was to detect neonatal sexual hormones concentration and histopathological changes on testicular development of the male progeny after oral exposure to freeze-dried RJ for 35 consecutive days. After mice give birth, male pups were collected together, separated by sex, and randomly standardized to seven (7) male pups per dam. Male pups were assigned to control diet (CON group), low dose RJ (L-RJ group) diet (control diet + 125 mg/kg/day RJ), moderate dose RJ (M-RJ group) diet (control diet + 250 mg/kg/day RJ) and high dose of RJ (H-RJ group) diet (control diet + 500 mg/kg/day RJ). After weaning, male pups were continuously fed with freeze-dried RJ until the age of PNDs 35. The results revealed that, oral M-RJ (250 mg/kg/day) administration significantly (p < 0.05) increased the testis weight, the diameter of seminiferous tubule and the height of seminiferous epithelium of offspring mice at PNDs 14. However, high-dose RJ (500 mg/kg/day) decreased the diameter of seminiferous tubule but increased the height of seminiferous epithelium of male offspring (p < 0.05) at the same time point. Furthermore, oral M-RJ treatment significantly (p < 0.05) increased the testis weight and spermatogenesis at PNDs 21. Whereas, oral H-RJ treatment significantly (p < 0.05) reduced the diameter of seminiferous tubule and the height of seminiferous epithelium at PNDs 21. At PNDs 35, oral M-RJ treatment increased the testis weight, the diameter of seminiferous tubule and the level of FSH. While, high-dose of RJ reduced testis weight and size (diameter of seminiferous tubule and height of seminiferous epithelium), ratio of apoptotic germ cells and incomplete spermatogenesis collectively. In addition, sexual hormone secretions (FSH, LH, E2) were decreased after RJs treatment (L-RJ, M-RJ, H-RJ) at PNDs 21 respectively. In conclusion, the results concluded that oral administration of low and moderate doses of RJ could enhance the development of testis at neonate period until pubescent, whereas unfavorable adverse effects induced by high dose of RJ might remain. MDPI 2019-11-15 /pmc/articles/PMC6912309/ /pubmed/31731648 http://dx.doi.org/10.3390/ani9110977 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shi, Zhicheng Enayatullah, Hamdard Lv, Zengpeng Dai, Hongjian Wei, Quanwei Shen, Lirong Karwand, Babrak Shi, Fangxiong Freeze-Dried Royal Jelly Proteins Enhanced the Testicular Development and Spermatogenesis in Pubescent Male Mice |
title | Freeze-Dried Royal Jelly Proteins Enhanced the Testicular Development and Spermatogenesis in Pubescent Male Mice |
title_full | Freeze-Dried Royal Jelly Proteins Enhanced the Testicular Development and Spermatogenesis in Pubescent Male Mice |
title_fullStr | Freeze-Dried Royal Jelly Proteins Enhanced the Testicular Development and Spermatogenesis in Pubescent Male Mice |
title_full_unstemmed | Freeze-Dried Royal Jelly Proteins Enhanced the Testicular Development and Spermatogenesis in Pubescent Male Mice |
title_short | Freeze-Dried Royal Jelly Proteins Enhanced the Testicular Development and Spermatogenesis in Pubescent Male Mice |
title_sort | freeze-dried royal jelly proteins enhanced the testicular development and spermatogenesis in pubescent male mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912309/ https://www.ncbi.nlm.nih.gov/pubmed/31731648 http://dx.doi.org/10.3390/ani9110977 |
work_keys_str_mv | AT shizhicheng freezedriedroyaljellyproteinsenhancedthetesticulardevelopmentandspermatogenesisinpubescentmalemice AT enayatullahhamdard freezedriedroyaljellyproteinsenhancedthetesticulardevelopmentandspermatogenesisinpubescentmalemice AT lvzengpeng freezedriedroyaljellyproteinsenhancedthetesticulardevelopmentandspermatogenesisinpubescentmalemice AT daihongjian freezedriedroyaljellyproteinsenhancedthetesticulardevelopmentandspermatogenesisinpubescentmalemice AT weiquanwei freezedriedroyaljellyproteinsenhancedthetesticulardevelopmentandspermatogenesisinpubescentmalemice AT shenlirong freezedriedroyaljellyproteinsenhancedthetesticulardevelopmentandspermatogenesisinpubescentmalemice AT karwandbabrak freezedriedroyaljellyproteinsenhancedthetesticulardevelopmentandspermatogenesisinpubescentmalemice AT shifangxiong freezedriedroyaljellyproteinsenhancedthetesticulardevelopmentandspermatogenesisinpubescentmalemice |