Cargando…

High Betaine, a Trimethylamine N-Oxide Related Metabolite, Is Prospectively Associated with Low Future Risk of Type 2 Diabetes Mellitus in the PREVEND Study

Background: Gut microbiota-related metabolites, trimethylamine-N-oxide (TMAO), choline, and betaine, have been shown to be associated with cardiovascular disease (CVD) risk. Moreover, lower plasma betaine concentrations have been reported in subjects with type 2 diabetes mellitus (T2DM). However, fe...

Descripción completa

Detalles Bibliográficos
Autores principales: Garcia, Erwin, Osté, Maryse C. J., Bennett, Dennis W., Jeyarajah, Elias J., Shalaurova, Irina, Gruppen, Eke G., Hazen, Stanley L., Otvos, James D., Bakker, Stephan J. L., Dullaart, Robin P.F., Connelly, Margery A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912391/
https://www.ncbi.nlm.nih.gov/pubmed/31683780
http://dx.doi.org/10.3390/jcm8111813
_version_ 1783479444951793664
author Garcia, Erwin
Osté, Maryse C. J.
Bennett, Dennis W.
Jeyarajah, Elias J.
Shalaurova, Irina
Gruppen, Eke G.
Hazen, Stanley L.
Otvos, James D.
Bakker, Stephan J. L.
Dullaart, Robin P.F.
Connelly, Margery A.
author_facet Garcia, Erwin
Osté, Maryse C. J.
Bennett, Dennis W.
Jeyarajah, Elias J.
Shalaurova, Irina
Gruppen, Eke G.
Hazen, Stanley L.
Otvos, James D.
Bakker, Stephan J. L.
Dullaart, Robin P.F.
Connelly, Margery A.
author_sort Garcia, Erwin
collection PubMed
description Background: Gut microbiota-related metabolites, trimethylamine-N-oxide (TMAO), choline, and betaine, have been shown to be associated with cardiovascular disease (CVD) risk. Moreover, lower plasma betaine concentrations have been reported in subjects with type 2 diabetes mellitus (T2DM). However, few studies have explored the association of betaine with incident T2DM, especially in the general population. The goals of this study were to evaluate the performance of a newly developed betaine assay and to prospectively explore the potential clinical associations of betaine and future risk of T2DM in a large population-based cohort. Methods: We developed a high-throughput, nuclear magnetic resonance (NMR) spectroscopy procedure for acquiring spectra that allow for the accurate quantification of plasma/serum betaine and TMAO. Assay performance for betaine quantification was assessed and Cox proportional hazards regression was employed to evaluate the association of betaine with incident T2DM in 4336 participants in the Prevention of Renal and Vascular End-Stage Disease (PREVEND) study. Results: Betaine assay results were linear (y = 1.02X − 3.75) over a wide range of concentrations (26.0–1135 µM). The limit of blank (LOB), limit of detection (LOD) and limit of quantitation (LOQ) were 6.4, 8.9, and 13.2 µM, respectively. Coefficients of variation for intra- and inter-assay precision ranged from 1.5–4.3% and 2.5–5.5%, respectively. Deming regression analysis of results produced by NMR and liquid chromatography coupled to tandem mass spectrometry(LC-MS/MS) revealed an R(2) value of 0.94 (Y = 1.08x – 1.89) and a small bias for higher values by NMR. The reference interval, in a cohort of apparently healthy adult participants (n = 501), was determined to be 23.8 to 74.7 µM (mean of 42.9 ± 12.6 µM). In the PREVEND study (n = 4336, excluding subjects with T2DM at baseline), higher betaine was associated with older age and lower body mass index, total cholesterol, triglycerides, and hsCRP. During a median follow-up of 7.3 (interquartile range (IQR), 5.9–7.7) years, 224 new T2DM cases were ascertained. Cox proportional hazards regression models revealed that the highest tertile of betaine was associated with a lower incidence of T2DM. Hazard ratio (HR) for the crude model was 0.61 (95% CI: 0.44–0.85, p = 0.004). The association remained significant even after adjusting for multiple clinical covariates and T2DM risk factors, including fasting glucose. HR for the fully-adjusted model was 0.50 (95% CI: 0.32–0.80, p = 0.003). Conclusions: The newly developed NMR-based betaine assay exhibits performance characteristics that are consistent with usage in the clinical laboratory. Betaine levels may be useful for assessing the risk of future T2DM.
format Online
Article
Text
id pubmed-6912391
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-69123912020-01-02 High Betaine, a Trimethylamine N-Oxide Related Metabolite, Is Prospectively Associated with Low Future Risk of Type 2 Diabetes Mellitus in the PREVEND Study Garcia, Erwin Osté, Maryse C. J. Bennett, Dennis W. Jeyarajah, Elias J. Shalaurova, Irina Gruppen, Eke G. Hazen, Stanley L. Otvos, James D. Bakker, Stephan J. L. Dullaart, Robin P.F. Connelly, Margery A. J Clin Med Article Background: Gut microbiota-related metabolites, trimethylamine-N-oxide (TMAO), choline, and betaine, have been shown to be associated with cardiovascular disease (CVD) risk. Moreover, lower plasma betaine concentrations have been reported in subjects with type 2 diabetes mellitus (T2DM). However, few studies have explored the association of betaine with incident T2DM, especially in the general population. The goals of this study were to evaluate the performance of a newly developed betaine assay and to prospectively explore the potential clinical associations of betaine and future risk of T2DM in a large population-based cohort. Methods: We developed a high-throughput, nuclear magnetic resonance (NMR) spectroscopy procedure for acquiring spectra that allow for the accurate quantification of plasma/serum betaine and TMAO. Assay performance for betaine quantification was assessed and Cox proportional hazards regression was employed to evaluate the association of betaine with incident T2DM in 4336 participants in the Prevention of Renal and Vascular End-Stage Disease (PREVEND) study. Results: Betaine assay results were linear (y = 1.02X − 3.75) over a wide range of concentrations (26.0–1135 µM). The limit of blank (LOB), limit of detection (LOD) and limit of quantitation (LOQ) were 6.4, 8.9, and 13.2 µM, respectively. Coefficients of variation for intra- and inter-assay precision ranged from 1.5–4.3% and 2.5–5.5%, respectively. Deming regression analysis of results produced by NMR and liquid chromatography coupled to tandem mass spectrometry(LC-MS/MS) revealed an R(2) value of 0.94 (Y = 1.08x – 1.89) and a small bias for higher values by NMR. The reference interval, in a cohort of apparently healthy adult participants (n = 501), was determined to be 23.8 to 74.7 µM (mean of 42.9 ± 12.6 µM). In the PREVEND study (n = 4336, excluding subjects with T2DM at baseline), higher betaine was associated with older age and lower body mass index, total cholesterol, triglycerides, and hsCRP. During a median follow-up of 7.3 (interquartile range (IQR), 5.9–7.7) years, 224 new T2DM cases were ascertained. Cox proportional hazards regression models revealed that the highest tertile of betaine was associated with a lower incidence of T2DM. Hazard ratio (HR) for the crude model was 0.61 (95% CI: 0.44–0.85, p = 0.004). The association remained significant even after adjusting for multiple clinical covariates and T2DM risk factors, including fasting glucose. HR for the fully-adjusted model was 0.50 (95% CI: 0.32–0.80, p = 0.003). Conclusions: The newly developed NMR-based betaine assay exhibits performance characteristics that are consistent with usage in the clinical laboratory. Betaine levels may be useful for assessing the risk of future T2DM. MDPI 2019-11-01 /pmc/articles/PMC6912391/ /pubmed/31683780 http://dx.doi.org/10.3390/jcm8111813 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Garcia, Erwin
Osté, Maryse C. J.
Bennett, Dennis W.
Jeyarajah, Elias J.
Shalaurova, Irina
Gruppen, Eke G.
Hazen, Stanley L.
Otvos, James D.
Bakker, Stephan J. L.
Dullaart, Robin P.F.
Connelly, Margery A.
High Betaine, a Trimethylamine N-Oxide Related Metabolite, Is Prospectively Associated with Low Future Risk of Type 2 Diabetes Mellitus in the PREVEND Study
title High Betaine, a Trimethylamine N-Oxide Related Metabolite, Is Prospectively Associated with Low Future Risk of Type 2 Diabetes Mellitus in the PREVEND Study
title_full High Betaine, a Trimethylamine N-Oxide Related Metabolite, Is Prospectively Associated with Low Future Risk of Type 2 Diabetes Mellitus in the PREVEND Study
title_fullStr High Betaine, a Trimethylamine N-Oxide Related Metabolite, Is Prospectively Associated with Low Future Risk of Type 2 Diabetes Mellitus in the PREVEND Study
title_full_unstemmed High Betaine, a Trimethylamine N-Oxide Related Metabolite, Is Prospectively Associated with Low Future Risk of Type 2 Diabetes Mellitus in the PREVEND Study
title_short High Betaine, a Trimethylamine N-Oxide Related Metabolite, Is Prospectively Associated with Low Future Risk of Type 2 Diabetes Mellitus in the PREVEND Study
title_sort high betaine, a trimethylamine n-oxide related metabolite, is prospectively associated with low future risk of type 2 diabetes mellitus in the prevend study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912391/
https://www.ncbi.nlm.nih.gov/pubmed/31683780
http://dx.doi.org/10.3390/jcm8111813
work_keys_str_mv AT garciaerwin highbetaineatrimethylaminenoxiderelatedmetaboliteisprospectivelyassociatedwithlowfutureriskoftype2diabetesmellitusintheprevendstudy
AT ostemarysecj highbetaineatrimethylaminenoxiderelatedmetaboliteisprospectivelyassociatedwithlowfutureriskoftype2diabetesmellitusintheprevendstudy
AT bennettdennisw highbetaineatrimethylaminenoxiderelatedmetaboliteisprospectivelyassociatedwithlowfutureriskoftype2diabetesmellitusintheprevendstudy
AT jeyarajaheliasj highbetaineatrimethylaminenoxiderelatedmetaboliteisprospectivelyassociatedwithlowfutureriskoftype2diabetesmellitusintheprevendstudy
AT shalaurovairina highbetaineatrimethylaminenoxiderelatedmetaboliteisprospectivelyassociatedwithlowfutureriskoftype2diabetesmellitusintheprevendstudy
AT gruppenekeg highbetaineatrimethylaminenoxiderelatedmetaboliteisprospectivelyassociatedwithlowfutureriskoftype2diabetesmellitusintheprevendstudy
AT hazenstanleyl highbetaineatrimethylaminenoxiderelatedmetaboliteisprospectivelyassociatedwithlowfutureriskoftype2diabetesmellitusintheprevendstudy
AT otvosjamesd highbetaineatrimethylaminenoxiderelatedmetaboliteisprospectivelyassociatedwithlowfutureriskoftype2diabetesmellitusintheprevendstudy
AT bakkerstephanjl highbetaineatrimethylaminenoxiderelatedmetaboliteisprospectivelyassociatedwithlowfutureriskoftype2diabetesmellitusintheprevendstudy
AT dullaartrobinpf highbetaineatrimethylaminenoxiderelatedmetaboliteisprospectivelyassociatedwithlowfutureriskoftype2diabetesmellitusintheprevendstudy
AT connellymargerya highbetaineatrimethylaminenoxiderelatedmetaboliteisprospectivelyassociatedwithlowfutureriskoftype2diabetesmellitusintheprevendstudy