Cargando…

Non-Invasive Assessment of Metabolic Adaptation in Paediatric Patients Suffering from Type 1 Diabetes Mellitus

An analysis of exhaled volatile organic compounds (VOC) may deliver systemic information quicker than available invasive techniques. Metabolic aberrations in pediatric type 1 diabetes (T1DM) are of high clinical importance and could be addressed via breathomics. Real-time breath analysis was combine...

Descripción completa

Detalles Bibliográficos
Autores principales: Trefz, Phillip, Schmidt, Sibylle C., Sukul, Pritam, Schubert, Jochen K., Miekisch, Wolfram, Fischer, Dagmar-Christiane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912469/
https://www.ncbi.nlm.nih.gov/pubmed/31717811
http://dx.doi.org/10.3390/jcm8111797
Descripción
Sumario:An analysis of exhaled volatile organic compounds (VOC) may deliver systemic information quicker than available invasive techniques. Metabolic aberrations in pediatric type 1 diabetes (T1DM) are of high clinical importance and could be addressed via breathomics. Real-time breath analysis was combined with continuous glucose monitoring (CGM) and blood tests in children suffering from T1DM and age-matched healthy controls in a highly standardized setting. CGM and breath-resolved VOC analysis were performed every 5 minutes for 9 hours and blood was sampled at pre-defined time points. Per participant (n = 44) food intake and physical activity were identical and a total of 22 blood samples and 93 minutes of breath samples were investigated. The inter-individual variability of glucose, insulin, glucagon, leptin, and soluble leptin receptor relative to food intake differed distinctly between patients and controls. In T1DM patients, the exhaled amounts of acetone, 2-propanol, and pentanal correlated to glucose concentrations. Of note, the strength of these correlations strongly depended on the interval between food intake and breath sampling. Our data suggests that metabolic adaptation through postprandial hyperglycemia and related oxidative stress is immediately reflected in exhaled breath VOC concentrations. Clinical translations of our findings may enable point-of-care applicability of online breath analysis towards personalized medicine.