Cargando…

Optimal Design of Patient-Specific Total Knee Arthroplasty for Improvement in Wear Performance

Life expectancy is on the rise and, concurrently, the demand for total knee arthroplasty (TKA), which lasts a lifetime, is increasing. To meet this demand, improved TKA designs have been introduced. Recent advances in radiography and manufacturing techniques have enabled the production of patient-sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Koh, Yong-Gon, Jung, Kyung-Hwan, Hong, Hyoung-Taek, Kim, Kang-Min, Kang, Kyoung-Tak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912647/
https://www.ncbi.nlm.nih.gov/pubmed/31752389
http://dx.doi.org/10.3390/jcm8112023
Descripción
Sumario:Life expectancy is on the rise and, concurrently, the demand for total knee arthroplasty (TKA), which lasts a lifetime, is increasing. To meet this demand, improved TKA designs have been introduced. Recent advances in radiography and manufacturing techniques have enabled the production of patient-specific TKA. Nevertheless, concerns regarding the wear performance, which limit the lifespan of TKA, remain to be addressed. This study aims at reducing the wear in patient-specific TKA using design optimization and parametric three-dimensional (3D) finite-element (FE) modelling. The femoral component design was implemented in a patient-specific manner, whereas the tibial insert conformity remained to be determined by design variables. The gait cycle loading condition was applied, and the optimized model was validated by the results obtained from the experimental wear tests. The wear predictions were iterated for five million gait cycles using the computational model with force-controlled input. Similar patterns for internal/external rotation and anterior/posterior translation were observed in both initial and optimal models. The wear rates for initial and optimal models were recorded as 23.2 mm(3)/million cycles and 16.7 mm(3)/million cycles, respectively. Moreover, the experimental wear rate in the optimal design was 17.8 mm(3)/million cycles, which validated our optimization procedure. This study suggests that tibial insert conformity is an important factor in influencing the wear performance of patient-specific TKA, and it is capable of providing improved clinical results through enhanced design selections. This finding can boost the future development of patient-specific TKA, and it can be extended to other joint-replacement designs. However, further research is required to explore the potential clinical benefits of the improved wear performance demonstrated in this study.