Cargando…
Plasma Levels of Retinol Binding Protein 4 Relate to Large VLDL and Small LDL Particles in Subjects with and without Type 2 Diabetes
Background: Retinol binding protein 4 (RBP4) carries retinol in plasma, but is also considered an adipokine, as it is implicated in insulin resistance in mice. Plasma RBP4 correlates with total cholesterol, low density lipoprotein (LDL)-cholesterol and triglycerides, and may confer increased cardiov...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912784/ https://www.ncbi.nlm.nih.gov/pubmed/31717719 http://dx.doi.org/10.3390/jcm8111792 |
Sumario: | Background: Retinol binding protein 4 (RBP4) carries retinol in plasma, but is also considered an adipokine, as it is implicated in insulin resistance in mice. Plasma RBP4 correlates with total cholesterol, low density lipoprotein (LDL)-cholesterol and triglycerides, and may confer increased cardiovascular risk. However, controversy exists about circulating RPB4 levels in type 2 diabetes mellitus (T2DM) and obesity. Here, we analyzed the relationships of RBP4 and retinol with lipoprotein subfractions in subjects with and without T2DM. Methods: Fasting plasma RBP4 (enzyme-linked immunosorbent assay) and retinol (high performance liquid chromatography) were assayed in 41 T2DM subjects and 37 non-diabetic subjects. Lipoprotein subfractions (NMR spectroscopy) were measured in 36 T2DM subjects and 27 non-diabetic subjects. Physical interaction of RBP4 with lipoproteins was assessed by fast protein liquid chromatography (FPLC). Results: Plasma RBP4 and retinol were strongly correlated (r = 0.881, p < 0.001). RBP4, retinol and the RBP4/retinol ratio were not different between T2DM and non-diabetic subjects (all p > 0.12), and were unrelated to body mass index. Notably, RBP4 and retinol were elevated in subjects with metabolic syndrome (p < 0.05), which was attributable to an association with elevated triglycerides (p = 0.013). Large VLDL, total LDL and small LDL were increased in T2DM subjects (p = 0.035 to 0.003). Taking all subjects together, RBP4 correlated with total cholesterol, non-HDL cholesterol, LDL cholesterol, triglycerides and apolipoprotein B in univariate analysis (p < 0.001 for each). Age-, sex- and diabetes status-adjusted multivariable linear regression analysis revealed that RBP4 was independently associated with large VLDL (β = 0.444, p = 0.005) and small LDL particles (β = 0.539, p < 0.001). Its relationship with large VLDL remained after further adjustment for retinol. RBP4 did not co-elute with VLDL nor LDL particles in FPLC analyses. Conclusions: Plasma RBP4 levels are related to but do not physically interact with large VLDL and small LDL particles. Elevated RBP4 may contribute to a proatherogenic plasma lipoprotein profile. |
---|