Cargando…

Monitoring of Bactericidal Effects of Silver Nanoparticles Based on Protein Signatures and VOC Emissions from Escherichia coli and Selected Salivary Bacteria

Escherichia coli and salivary Klebsiella oxytoca and Staphylococcus saccharolyticus were subjected to different concentrations of silver nanoparticles (AgNPs), namely: 12.5, 50, and 100 µg mL(−1). Matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) spectra wer...

Descripción completa

Detalles Bibliográficos
Autores principales: Monedeiro, Fernanda, Pomastowski, Paweł, Milanowski, Maciej, Ligor, Tomasz, Buszewski, Bogusław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912796/
https://www.ncbi.nlm.nih.gov/pubmed/31752439
http://dx.doi.org/10.3390/jcm8112024
Descripción
Sumario:Escherichia coli and salivary Klebsiella oxytoca and Staphylococcus saccharolyticus were subjected to different concentrations of silver nanoparticles (AgNPs), namely: 12.5, 50, and 100 µg mL(−1). Matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) spectra were acquired after specified periods: 0, 1, 4, and 12 h. For study of volatile metabolites, headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME-GC-MS) was employed—AgNPs were added to bacteria cultures and the headspace was analyzed immediately and after 12 h of incubation. Principal components analysis provided discrimination between clusters of protein profiles belonging to different strains. Canonical correlation, network analysis, and multiple linear regression approach revealed that dimethyl disulfide, dimethyl trisulfide, 2-heptanone, and dodecanal (related to the metabolism of sulfur-containing amino acids and fatty acids synthesis) are exemplary molecular indicators, whose response variation deeply correlated to the interaction with bacteria. Therefore, such species can serve as biomarkers of the agent’s effectiveness. The present investigation pointed out that the used approaches can be useful in the monitoring of response to therapeutic treatment based on AgNPs. Furthermore, biochemical mechanisms enrolled in the bactericidal action of nanoparticles can be applied in the development of new agents with enhanced properties.