Cargando…

MicroRNA‐101 Protects Against Cardiac Remodeling Following Myocardial Infarction via Downregulation of Runt‐Related Transcription Factor 1

BACKGROUND: Myocardial infarction (MI) generally leads to heart failure and sudden death. The hearts of people with MI undergo remodeling with the features of expanded myocardial infarct size and dilated left ventricle. Many microRNAs (miRs) have been revealed to be involved in the remodeling proces...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xidong, Zhang, Shouwen, Wa, Mingguang, Liu, Zhonghua, Hu, Shunpeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912979/
https://www.ncbi.nlm.nih.gov/pubmed/31766975
http://dx.doi.org/10.1161/JAHA.119.013112
_version_ 1783479581126164480
author Li, Xidong
Zhang, Shouwen
Wa, Mingguang
Liu, Zhonghua
Hu, Shunpeng
author_facet Li, Xidong
Zhang, Shouwen
Wa, Mingguang
Liu, Zhonghua
Hu, Shunpeng
author_sort Li, Xidong
collection PubMed
description BACKGROUND: Myocardial infarction (MI) generally leads to heart failure and sudden death. The hearts of people with MI undergo remodeling with the features of expanded myocardial infarct size and dilated left ventricle. Many microRNAs (miRs) have been revealed to be involved in the remodeling process; however, the participation of miR‐101 remains unknown. Therefore, this study aims to find out the regulatory mechanism of miR‐101 in MI‐induced cardiac remodeling. METHODS AND RESULTS: Microarray data analysis was conducted to screen differentially expressed genes in MI. The rat model of MI was established by left coronary artery ligation. In addition, the relationship between miR‐101 and runt‐related transcription factor 1 (RUNX1) was identified using dual luciferase reporter assay. After that, the rats injected with lentiviral vector expressing miR‐101 mimic, inhibitor, or small interfering RNA against RUNX1 were used to examine the effects of miR‐101 and RUNX1 on transforming growth factor β signaling pathway, cardiac function, infarct size, myocardial fibrosis, and cardiomyocyte apoptosis. RUNX1 was highly expressed, while miR‐101 was poorly expressed in MI. miR‐101 was identified to target RUNX1. Following that, it was found that overexpression of miR‐101 or silencing of RUNX1 improved the cardiac function and elevated left ventricular end‐diastolic and end‐systolic diameters. Also, miR‐101 elevation or RUNX1 depletion decreased infarct size, myocardial fibrosis, and cardiomyocyte apoptosis. Moreover, miR‐101 could negatively regulate RUNX1 to inactivate the transforming growth factor β1/Smad family member 2 signaling pathway. CONCLUSIONS: Taken together, miR‐101 plays a protective role against cardiac remodeling following MI via inactivation of the RUNX1‐dependent transforming growth factor β1/Smad family member 2 signaling pathway, proposing miR‐101 and RUNX1 as potential therapeutic targets for MI.
format Online
Article
Text
id pubmed-6912979
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-69129792019-12-23 MicroRNA‐101 Protects Against Cardiac Remodeling Following Myocardial Infarction via Downregulation of Runt‐Related Transcription Factor 1 Li, Xidong Zhang, Shouwen Wa, Mingguang Liu, Zhonghua Hu, Shunpeng J Am Heart Assoc Original Research BACKGROUND: Myocardial infarction (MI) generally leads to heart failure and sudden death. The hearts of people with MI undergo remodeling with the features of expanded myocardial infarct size and dilated left ventricle. Many microRNAs (miRs) have been revealed to be involved in the remodeling process; however, the participation of miR‐101 remains unknown. Therefore, this study aims to find out the regulatory mechanism of miR‐101 in MI‐induced cardiac remodeling. METHODS AND RESULTS: Microarray data analysis was conducted to screen differentially expressed genes in MI. The rat model of MI was established by left coronary artery ligation. In addition, the relationship between miR‐101 and runt‐related transcription factor 1 (RUNX1) was identified using dual luciferase reporter assay. After that, the rats injected with lentiviral vector expressing miR‐101 mimic, inhibitor, or small interfering RNA against RUNX1 were used to examine the effects of miR‐101 and RUNX1 on transforming growth factor β signaling pathway, cardiac function, infarct size, myocardial fibrosis, and cardiomyocyte apoptosis. RUNX1 was highly expressed, while miR‐101 was poorly expressed in MI. miR‐101 was identified to target RUNX1. Following that, it was found that overexpression of miR‐101 or silencing of RUNX1 improved the cardiac function and elevated left ventricular end‐diastolic and end‐systolic diameters. Also, miR‐101 elevation or RUNX1 depletion decreased infarct size, myocardial fibrosis, and cardiomyocyte apoptosis. Moreover, miR‐101 could negatively regulate RUNX1 to inactivate the transforming growth factor β1/Smad family member 2 signaling pathway. CONCLUSIONS: Taken together, miR‐101 plays a protective role against cardiac remodeling following MI via inactivation of the RUNX1‐dependent transforming growth factor β1/Smad family member 2 signaling pathway, proposing miR‐101 and RUNX1 as potential therapeutic targets for MI. John Wiley and Sons Inc. 2019-11-26 /pmc/articles/PMC6912979/ /pubmed/31766975 http://dx.doi.org/10.1161/JAHA.119.013112 Text en © 2019 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Research
Li, Xidong
Zhang, Shouwen
Wa, Mingguang
Liu, Zhonghua
Hu, Shunpeng
MicroRNA‐101 Protects Against Cardiac Remodeling Following Myocardial Infarction via Downregulation of Runt‐Related Transcription Factor 1
title MicroRNA‐101 Protects Against Cardiac Remodeling Following Myocardial Infarction via Downregulation of Runt‐Related Transcription Factor 1
title_full MicroRNA‐101 Protects Against Cardiac Remodeling Following Myocardial Infarction via Downregulation of Runt‐Related Transcription Factor 1
title_fullStr MicroRNA‐101 Protects Against Cardiac Remodeling Following Myocardial Infarction via Downregulation of Runt‐Related Transcription Factor 1
title_full_unstemmed MicroRNA‐101 Protects Against Cardiac Remodeling Following Myocardial Infarction via Downregulation of Runt‐Related Transcription Factor 1
title_short MicroRNA‐101 Protects Against Cardiac Remodeling Following Myocardial Infarction via Downregulation of Runt‐Related Transcription Factor 1
title_sort microrna‐101 protects against cardiac remodeling following myocardial infarction via downregulation of runt‐related transcription factor 1
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912979/
https://www.ncbi.nlm.nih.gov/pubmed/31766975
http://dx.doi.org/10.1161/JAHA.119.013112
work_keys_str_mv AT lixidong microrna101protectsagainstcardiacremodelingfollowingmyocardialinfarctionviadownregulationofruntrelatedtranscriptionfactor1
AT zhangshouwen microrna101protectsagainstcardiacremodelingfollowingmyocardialinfarctionviadownregulationofruntrelatedtranscriptionfactor1
AT wamingguang microrna101protectsagainstcardiacremodelingfollowingmyocardialinfarctionviadownregulationofruntrelatedtranscriptionfactor1
AT liuzhonghua microrna101protectsagainstcardiacremodelingfollowingmyocardialinfarctionviadownregulationofruntrelatedtranscriptionfactor1
AT hushunpeng microrna101protectsagainstcardiacremodelingfollowingmyocardialinfarctionviadownregulationofruntrelatedtranscriptionfactor1