Cargando…
Calibration: the Achilles heel of predictive analytics
BACKGROUND: The assessment of calibration performance of risk prediction models based on regression or more flexible machine learning algorithms receives little attention. MAIN TEXT: Herein, we argue that this needs to change immediately because poorly calibrated algorithms can be misleading and pot...
Autores principales: | Van Calster, Ben, McLernon, David J., van Smeden, Maarten, Wynants, Laure, Steyerberg, Ewout W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912996/ https://www.ncbi.nlm.nih.gov/pubmed/31842878 http://dx.doi.org/10.1186/s12916-019-1466-7 |
Ejemplares similares
-
Three myths about risk thresholds for prediction models
por: Wynants, Laure, et al.
Publicado: (2019) -
There is no such thing as a validated prediction model
por: Van Calster, Ben, et al.
Publicado: (2023) -
Predictive analytics in health care: how can we know it works?
por: Van Calster, Ben, et al.
Publicado: (2019) -
Minimal reporting improvement after peer review in reports of COVID-19 prediction models: systematic review
por: Hudda, Mohammed T., et al.
Publicado: (2023) -
Adaptive sample size determination for the development of clinical prediction models
por: Christodoulou, Evangelia, et al.
Publicado: (2021)