Cargando…
Deep Kernel and Deep Learning for Genome-Based Prediction of Single Traits in Multienvironment Breeding Trials
Deep learning (DL) is a promising method for genomic-enabled prediction. However, the implementation of DL is difficult because many hyperparameters (number of hidden layers, number of neurons, learning rate, number of epochs, batch size, etc.) need to be tuned. For this reason, deep kernel methods,...
Autores principales: | Crossa, José, Martini, Johannes W.R., Gianola, Daniel, Pérez-Rodríguez, Paulino, Jarquin, Diego, Juliana, Philomin, Montesinos-López, Osval, Cuevas, Jaime |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6913188/ https://www.ncbi.nlm.nih.gov/pubmed/31921277 http://dx.doi.org/10.3389/fgene.2019.01168 |
Ejemplares similares
-
Deep Kernel for Genomic and Near Infrared Predictions in Multi-environment Breeding Trials
por: Cuevas, Jaime, et al.
Publicado: (2019) -
Bayesian multitrait kernel methods improve multienvironment genome-based prediction
por: Montesinos-López, Osval Antonio, et al.
Publicado: (2021) -
An R Package for Multitrait and Multienvironment Data with the Item-Based Collaborative Filtering Algorithm
por: Montesinos-López, Osval A., et al.
Publicado: (2018) -
Approximate Genome-Based Kernel Models for Large Data Sets Including Main Effects and Interactions
por: Cuevas, Jaime, et al.
Publicado: (2020) -
A Benchmarking Between Deep Learning, Support Vector Machine and Bayesian Threshold Best Linear Unbiased Prediction for Predicting Ordinal Traits in Plant Breeding
por: Montesinos-López, Osval A., et al.
Publicado: (2019)