Cargando…
Combining Contextualized Embeddings and Prior Knowledge for Clinical Named Entity Recognition: Evaluation Study
BACKGROUND: Named entity recognition (NER) is a key step in clinical natural language processing (NLP). Traditionally, rule-based systems leverage prior knowledge to define rules to identify named entities. Recently, deep learning–based NER systems have become more and more popular. Contextualized w...
Autores principales: | Jiang, Min, Sanger, Todd, Liu, Xiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6913757/ https://www.ncbi.nlm.nih.gov/pubmed/31719024 http://dx.doi.org/10.2196/14850 |
Ejemplares similares
-
Contextualized Embeddings in Named-Entity Recognition: An Empirical Study on Generalization
por: Taillé, Bruno, et al.
Publicado: (2020) -
Biomedical named entity recognition using deep neural networks with contextual information
por: Cho, Hyejin, et al.
Publicado: (2019) -
Multi-task learning for Chinese clinical named entity recognition with external knowledge
por: Cheng, Ming, et al.
Publicado: (2021) -
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017) -
Comparing general and specialized word embeddings for biomedical named entity recognition
por: Ramos-Vargas, Rigo E., et al.
Publicado: (2021)