Cargando…
Interpretability and Class Imbalance in Prediction Models for Pain Volatility in Manage My Pain App Users: Analysis Using Feature Selection and Majority Voting Methods
BACKGROUND: Pain volatility is an important factor in chronic pain experience and adaptation. Previously, we employed machine-learning methods to define and predict pain volatility levels from users of the Manage My Pain app. Reducing the number of features is important to help increase interpretabi...
Autores principales: | Rahman, Quazi Abidur, Janmohamed, Tahir, Clarke, Hance, Ritvo, Paul, Heffernan, Jane, Katz, Joel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6913759/ https://www.ncbi.nlm.nih.gov/pubmed/31746764 http://dx.doi.org/10.2196/15601 |
Ejemplares similares
-
Defining and Predicting Pain Volatility in Users of the Manage My Pain App: Analysis Using Data Mining and Machine Learning Methods
por: Rahman, Quazi Abidur, et al.
Publicado: (2018) -
Patterns of User Engagement With the Mobile App, Manage My Pain: Results of a Data Mining Investigation
por: Rahman, Quazi Abidur, et al.
Publicado: (2017) -
User Engagement and Clinical Impact of the Manage My Pain App in Patients With Chronic Pain: A Real-World, Multi-site Trial
por: Bhatia, Anuj, et al.
Publicado: (2021) -
Engagement with Manage My Pain mobile health application among patients at the Transitional Pain Service
por: Slepian, P Maxwell, et al.
Publicado: (2020) -
Pain catastrophizing as a risk factor for chronic pain after total knee arthroplasty: a systematic review
por: Burns, Lindsay C, et al.
Publicado: (2015)