Cargando…
Ultra-deep massively parallel sequencing with unique molecular identifier tagging achieves comparable performance to droplet digital PCR for detection and quantification of circulating tumor DNA from lung cancer patients
The identification and quantification of actionable mutations are of critical importance for effective genotype-directed therapies, prognosis and drug response monitoring in patients with non-small-cell lung cancer (NSCLC). Although tumor tissue biopsy remains the gold standard for diagnosis of NSCL...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6913927/ https://www.ncbi.nlm.nih.gov/pubmed/31841547 http://dx.doi.org/10.1371/journal.pone.0226193 |
_version_ | 1783479715287269376 |
---|---|
author | Tran, Le Son Pham, Hong-Anh Thi Tran, Vu-Uyen Tran, Thanh-Truong Dang, Anh-Thu Huynh Le, Dinh-Thong Nguyen, Son-Lam Nguyen, Ngoc-Vu Nguyen, Trieu-Vu Vo, Binh Thanh Dao, Hong-Thuy Thi Nguyen, Nguyen Huu Tran, Tam Huu Nguyen, Chu Van Pham, Phuong Cam Dang-Mai, Anh Tuan Dinh-Nguyen, Thien Kim Phan, Van Hieu Do, Thanh-Thuy Thi Truong Dinh, Kiet Do, Han Ngoc Phan, Minh-Duy Giang, Hoa Nguyen, Hoai-Nghia |
author_facet | Tran, Le Son Pham, Hong-Anh Thi Tran, Vu-Uyen Tran, Thanh-Truong Dang, Anh-Thu Huynh Le, Dinh-Thong Nguyen, Son-Lam Nguyen, Ngoc-Vu Nguyen, Trieu-Vu Vo, Binh Thanh Dao, Hong-Thuy Thi Nguyen, Nguyen Huu Tran, Tam Huu Nguyen, Chu Van Pham, Phuong Cam Dang-Mai, Anh Tuan Dinh-Nguyen, Thien Kim Phan, Van Hieu Do, Thanh-Thuy Thi Truong Dinh, Kiet Do, Han Ngoc Phan, Minh-Duy Giang, Hoa Nguyen, Hoai-Nghia |
author_sort | Tran, Le Son |
collection | PubMed |
description | The identification and quantification of actionable mutations are of critical importance for effective genotype-directed therapies, prognosis and drug response monitoring in patients with non-small-cell lung cancer (NSCLC). Although tumor tissue biopsy remains the gold standard for diagnosis of NSCLC, the analysis of circulating tumor DNA (ctDNA) in plasma, known as liquid biopsy, has recently emerged as an alternative and noninvasive approach for exploring tumor genetic constitution. In this study, we developed a protocol for liquid biopsy using ultra-deep massively parallel sequencing (MPS) with unique molecular identifier tagging and evaluated its performance for the identification and quantification of tumor-derived mutations from plasma of patients with advanced NSCLC. Paired plasma and tumor tissue samples were used to evaluate mutation profiles detected by ultra-deep MPS, which showed 87.5% concordance. Cross-platform comparison with droplet digital PCR demonstrated comparable detection performance (91.4% concordance, Cohen’s kappa coefficient of 0.85 with 95% CI = 0.72–0.97) and great reliability in quantification of mutation allele frequency (Intraclass correlation coefficient of 0.96 with 95% CI = 0.90–0.98). Our results highlight the potential application of liquid biopsy using ultra-deep MPS as a routine assay in clinical practice for both detection and quantification of actionable mutation landscape in NSCLC patients. |
format | Online Article Text |
id | pubmed-6913927 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-69139272019-12-27 Ultra-deep massively parallel sequencing with unique molecular identifier tagging achieves comparable performance to droplet digital PCR for detection and quantification of circulating tumor DNA from lung cancer patients Tran, Le Son Pham, Hong-Anh Thi Tran, Vu-Uyen Tran, Thanh-Truong Dang, Anh-Thu Huynh Le, Dinh-Thong Nguyen, Son-Lam Nguyen, Ngoc-Vu Nguyen, Trieu-Vu Vo, Binh Thanh Dao, Hong-Thuy Thi Nguyen, Nguyen Huu Tran, Tam Huu Nguyen, Chu Van Pham, Phuong Cam Dang-Mai, Anh Tuan Dinh-Nguyen, Thien Kim Phan, Van Hieu Do, Thanh-Thuy Thi Truong Dinh, Kiet Do, Han Ngoc Phan, Minh-Duy Giang, Hoa Nguyen, Hoai-Nghia PLoS One Research Article The identification and quantification of actionable mutations are of critical importance for effective genotype-directed therapies, prognosis and drug response monitoring in patients with non-small-cell lung cancer (NSCLC). Although tumor tissue biopsy remains the gold standard for diagnosis of NSCLC, the analysis of circulating tumor DNA (ctDNA) in plasma, known as liquid biopsy, has recently emerged as an alternative and noninvasive approach for exploring tumor genetic constitution. In this study, we developed a protocol for liquid biopsy using ultra-deep massively parallel sequencing (MPS) with unique molecular identifier tagging and evaluated its performance for the identification and quantification of tumor-derived mutations from plasma of patients with advanced NSCLC. Paired plasma and tumor tissue samples were used to evaluate mutation profiles detected by ultra-deep MPS, which showed 87.5% concordance. Cross-platform comparison with droplet digital PCR demonstrated comparable detection performance (91.4% concordance, Cohen’s kappa coefficient of 0.85 with 95% CI = 0.72–0.97) and great reliability in quantification of mutation allele frequency (Intraclass correlation coefficient of 0.96 with 95% CI = 0.90–0.98). Our results highlight the potential application of liquid biopsy using ultra-deep MPS as a routine assay in clinical practice for both detection and quantification of actionable mutation landscape in NSCLC patients. Public Library of Science 2019-12-16 /pmc/articles/PMC6913927/ /pubmed/31841547 http://dx.doi.org/10.1371/journal.pone.0226193 Text en © 2019 Tran et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Tran, Le Son Pham, Hong-Anh Thi Tran, Vu-Uyen Tran, Thanh-Truong Dang, Anh-Thu Huynh Le, Dinh-Thong Nguyen, Son-Lam Nguyen, Ngoc-Vu Nguyen, Trieu-Vu Vo, Binh Thanh Dao, Hong-Thuy Thi Nguyen, Nguyen Huu Tran, Tam Huu Nguyen, Chu Van Pham, Phuong Cam Dang-Mai, Anh Tuan Dinh-Nguyen, Thien Kim Phan, Van Hieu Do, Thanh-Thuy Thi Truong Dinh, Kiet Do, Han Ngoc Phan, Minh-Duy Giang, Hoa Nguyen, Hoai-Nghia Ultra-deep massively parallel sequencing with unique molecular identifier tagging achieves comparable performance to droplet digital PCR for detection and quantification of circulating tumor DNA from lung cancer patients |
title | Ultra-deep massively parallel sequencing with unique molecular identifier tagging achieves comparable performance to droplet digital PCR for detection and quantification of circulating tumor DNA from lung cancer patients |
title_full | Ultra-deep massively parallel sequencing with unique molecular identifier tagging achieves comparable performance to droplet digital PCR for detection and quantification of circulating tumor DNA from lung cancer patients |
title_fullStr | Ultra-deep massively parallel sequencing with unique molecular identifier tagging achieves comparable performance to droplet digital PCR for detection and quantification of circulating tumor DNA from lung cancer patients |
title_full_unstemmed | Ultra-deep massively parallel sequencing with unique molecular identifier tagging achieves comparable performance to droplet digital PCR for detection and quantification of circulating tumor DNA from lung cancer patients |
title_short | Ultra-deep massively parallel sequencing with unique molecular identifier tagging achieves comparable performance to droplet digital PCR for detection and quantification of circulating tumor DNA from lung cancer patients |
title_sort | ultra-deep massively parallel sequencing with unique molecular identifier tagging achieves comparable performance to droplet digital pcr for detection and quantification of circulating tumor dna from lung cancer patients |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6913927/ https://www.ncbi.nlm.nih.gov/pubmed/31841547 http://dx.doi.org/10.1371/journal.pone.0226193 |
work_keys_str_mv | AT tranleson ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT phamhonganhthi ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT tranvuuyen ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT tranthanhtruong ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT danganhthuhuynh ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT ledinhthong ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT nguyensonlam ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT nguyenngocvu ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT nguyentrieuvu ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT vobinhthanh ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT daohongthuythi ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT nguyennguyenhuu ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT trantamhuu ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT nguyenchuvan ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT phamphuongcam ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT dangmaianhtuan ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT dinhnguyenthienkim ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT phanvanhieu ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT dothanhthuythi ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT truongdinhkiet ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT dohanngoc ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT phanminhduy ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT gianghoa ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients AT nguyenhoainghia ultradeepmassivelyparallelsequencingwithuniquemolecularidentifiertaggingachievescomparableperformancetodropletdigitalpcrfordetectionandquantificationofcirculatingtumordnafromlungcancerpatients |