Cargando…
Silencing lncRNA FOXD2-AS1 inhibits proliferation, migration, invasion and drug resistance of drug-resistant glioma cells and promotes their apoptosis via microRNA-98-5p/CPEB4 axis
Objective: This study was conducted to elucidate the long non-coding RNA FOXD2-AS1 (lncRNA FOXD2-AS1) expression in glioma and its mechanism on the biological features of glioma cells and the drug resistance of temozolomide (TMZ). Results: Highly expressed FOXD2-AS1 was found in glioma. There was mo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914387/ https://www.ncbi.nlm.nih.gov/pubmed/31770107 http://dx.doi.org/10.18632/aging.102455 |
Sumario: | Objective: This study was conducted to elucidate the long non-coding RNA FOXD2-AS1 (lncRNA FOXD2-AS1) expression in glioma and its mechanism on the biological features of glioma cells and the drug resistance of temozolomide (TMZ). Results: Highly expressed FOXD2-AS1 was found in glioma. There was more powerful chemotherapeutic resistance of TMZ resistant cell lines than that of the parent cell lines. Silence of FOXD2-AS1 suppressed proliferation and drug resistance and promoted apoptosis of drug-resistant glioma cells. Overexpressed FOXD2-AS1 presented an opposite trend. FOXD2-AS1 could be used as a competing endogenous RNA to adsorb miR-98-5p, thereby up-regulating CPEB4. Conclusion: Our study suggests that down-regulated FOXD2-AS1 repressed invasion, proliferation, migration and drug resistance of drug-resistant glioma cells while stimulating their apoptosis via increasing miR-98-5p and inhibiting CPEB4 expression. Methods: FOXD2-AS1, microRNA-98-5p (miR-98-5p) and cytoplasmic polyadenylation element binding (CPEB4) expression in glioma tissues were tested. Expression of E-cadherin, N-cadherin and Vimentin in glioma cells were explored. A series of assays were conducted to detect the function of FOXD2-AS1 in migration, proliferation, apoptosis, and invasion of glioma cells. Changes in drug-resistance of cells under TMZ treatment were examined, and tumor formation in nude mice was performed to test the changes of drug resistance in vivo. |
---|