Cargando…
Using Low-Dimensional Manifolds to Map Relationships Between Dynamic Brain Networks
As the field of dynamic brain networks continues to expand, new methods are needed to allow for optimal handling and understanding of this explosion in data. We propose here a novel approach that embeds dynamic brain networks onto a two-dimensional (2D) manifold based on similarities and differences...
Autores principales: | Bahrami, Mohsen, Lyday, Robert G., Casanova, Ramon, Burdette, Jonathan H., Simpson, Sean L., Laurienti, Paul J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914694/ https://www.ncbi.nlm.nih.gov/pubmed/31920590 http://dx.doi.org/10.3389/fnhum.2019.00430 |
Ejemplares similares
-
Embedding Functional Brain Networks in Low Dimensional Spaces Using Manifold Learning Techniques
por: Casanova, Ramon, et al.
Publicado: (2021) -
Global integration of the hot-state brain network of appetite predicts short term weight loss in older adult
por: Paolini, Brielle M., et al.
Publicado: (2015) -
Defining nodes in complex brain networks
por: Stanley, Matthew L., et al.
Publicado: (2013) -
A permutation testing framework to compare groups of brain networks
por: Simpson, Sean L., et al.
Publicado: (2013) -
Changes in global and regional modularity associated with increasing working memory load
por: Stanley, Matthew L., et al.
Publicado: (2014)