Cargando…

Magnetoelectric Coupling by Piezoelectric Tensor Design

Strain-coupled magnetoelectric (ME) phenomena in piezoelectric/ferromagnetic thin-film bilayers are a promising paradigm for sensors and information storage devices, where strain manipulates the magnetization of the ferromagnetic film. In-plane magnetization rotation with an electric field across th...

Descripción completa

Detalles Bibliográficos
Autores principales: Irwin, J., Lindemann, S., Maeng, W., Wang, J. J., Vaithyanathan, V., Hu, J. M., Chen, L. Q., Schlom, D. G., Eom, C. B., Rzchowski, M. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914799/
https://www.ncbi.nlm.nih.gov/pubmed/31844071
http://dx.doi.org/10.1038/s41598-019-55139-1
_version_ 1783479883477811200
author Irwin, J.
Lindemann, S.
Maeng, W.
Wang, J. J.
Vaithyanathan, V.
Hu, J. M.
Chen, L. Q.
Schlom, D. G.
Eom, C. B.
Rzchowski, M. S.
author_facet Irwin, J.
Lindemann, S.
Maeng, W.
Wang, J. J.
Vaithyanathan, V.
Hu, J. M.
Chen, L. Q.
Schlom, D. G.
Eom, C. B.
Rzchowski, M. S.
author_sort Irwin, J.
collection PubMed
description Strain-coupled magnetoelectric (ME) phenomena in piezoelectric/ferromagnetic thin-film bilayers are a promising paradigm for sensors and information storage devices, where strain manipulates the magnetization of the ferromagnetic film. In-plane magnetization rotation with an electric field across the film thickness has been challenging due to the large reduction of in-plane piezoelectric strain by substrate clamping, and in two-terminal devices, the requirement of anisotropic in-plane strain. Here we show that these limitations can be overcome by designing the piezoelectric strain tensor using the boundary interaction between biased and unbiased piezoelectric. We fabricated 500 nm thick, (001) oriented [Pb(Mg(1/3)Nb(2/3))O(3)](0.7)-[PbTiO(3)](0.3) (PMN-PT) unclamped piezoelectric membranes with ferromagnetic Ni overlayers. Guided by analytical and numerical continuum elastic calculations, we designed and fabricated two-terminal devices exhibiting electric field-driven Ni magnetization rotation. We develop a method that can apply designed strain patterns to many other materials systems to control properties such as superconductivity, band topology, conductivity, and optical response.
format Online
Article
Text
id pubmed-6914799
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-69147992019-12-18 Magnetoelectric Coupling by Piezoelectric Tensor Design Irwin, J. Lindemann, S. Maeng, W. Wang, J. J. Vaithyanathan, V. Hu, J. M. Chen, L. Q. Schlom, D. G. Eom, C. B. Rzchowski, M. S. Sci Rep Article Strain-coupled magnetoelectric (ME) phenomena in piezoelectric/ferromagnetic thin-film bilayers are a promising paradigm for sensors and information storage devices, where strain manipulates the magnetization of the ferromagnetic film. In-plane magnetization rotation with an electric field across the film thickness has been challenging due to the large reduction of in-plane piezoelectric strain by substrate clamping, and in two-terminal devices, the requirement of anisotropic in-plane strain. Here we show that these limitations can be overcome by designing the piezoelectric strain tensor using the boundary interaction between biased and unbiased piezoelectric. We fabricated 500 nm thick, (001) oriented [Pb(Mg(1/3)Nb(2/3))O(3)](0.7)-[PbTiO(3)](0.3) (PMN-PT) unclamped piezoelectric membranes with ferromagnetic Ni overlayers. Guided by analytical and numerical continuum elastic calculations, we designed and fabricated two-terminal devices exhibiting electric field-driven Ni magnetization rotation. We develop a method that can apply designed strain patterns to many other materials systems to control properties such as superconductivity, band topology, conductivity, and optical response. Nature Publishing Group UK 2019-12-16 /pmc/articles/PMC6914799/ /pubmed/31844071 http://dx.doi.org/10.1038/s41598-019-55139-1 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Irwin, J.
Lindemann, S.
Maeng, W.
Wang, J. J.
Vaithyanathan, V.
Hu, J. M.
Chen, L. Q.
Schlom, D. G.
Eom, C. B.
Rzchowski, M. S.
Magnetoelectric Coupling by Piezoelectric Tensor Design
title Magnetoelectric Coupling by Piezoelectric Tensor Design
title_full Magnetoelectric Coupling by Piezoelectric Tensor Design
title_fullStr Magnetoelectric Coupling by Piezoelectric Tensor Design
title_full_unstemmed Magnetoelectric Coupling by Piezoelectric Tensor Design
title_short Magnetoelectric Coupling by Piezoelectric Tensor Design
title_sort magnetoelectric coupling by piezoelectric tensor design
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914799/
https://www.ncbi.nlm.nih.gov/pubmed/31844071
http://dx.doi.org/10.1038/s41598-019-55139-1
work_keys_str_mv AT irwinj magnetoelectriccouplingbypiezoelectrictensordesign
AT lindemanns magnetoelectriccouplingbypiezoelectrictensordesign
AT maengw magnetoelectriccouplingbypiezoelectrictensordesign
AT wangjj magnetoelectriccouplingbypiezoelectrictensordesign
AT vaithyanathanv magnetoelectriccouplingbypiezoelectrictensordesign
AT hujm magnetoelectriccouplingbypiezoelectrictensordesign
AT chenlq magnetoelectriccouplingbypiezoelectrictensordesign
AT schlomdg magnetoelectriccouplingbypiezoelectrictensordesign
AT eomcb magnetoelectriccouplingbypiezoelectrictensordesign
AT rzchowskims magnetoelectriccouplingbypiezoelectrictensordesign